Problem 11

Yang Yang

April 3, 2017

This proof is based on sine rule in these three geometries. Sine rule in Euclidean geometry states if we have a triangle $A B C$ with each angle corresponding to an edge a, b and c, we will have

$$
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}
$$

In spherical geometry and hyperbolic geometry, the sine rule becomes

$$
\begin{gathered}
\frac{\sin (A)}{\sin (a)}=\frac{\sin (B)}{\sin (b)}=\frac{\sin (C)}{\sin (c)} \quad \text { (spherical geomertry) } \\
\frac{\sin (A)}{\sinh (a)}=\frac{\sin (B)}{\sinh (b)}=\frac{\sin (C)}{\sinh (c)} \quad \text { (hyperbolic geomertry). }
\end{gathered}
$$

Noticing sine rule in three different geometries only differs by the denominator part, we can rewrite $\sin (A) / a, \sin (A) / \sin (a)$ and $\sin (A) / \sinh (a)$ as $\sin (A) / f(a)$, and hence we can replace $f(a)$ to reach the conclusion in any of these three geometries.

When we connect the centers of two circles O and $O^{\prime}, O O^{\prime}$ becomes a perpendicular bisector the chord $A B$ and $C D$ at G and H due to the symmetry of two circles. Since $O F$ and $O^{\prime} E$ are two tangent lines, $\angle O E O^{\prime}$ and $\angle O F O^{\prime}$ are two right angles. Since $A B=2 B G$, we need to find the length of $B G$. In $\triangle B O G$, we have $\sin (\angle B G O) / f(O B)=\sin (\angle B O G) / f(B G)$, so $f(B G)=(\sin (\angle B O G) / \sin (\angle O G B)) f(O B)=$ $(\sin (\angle B O G) / \sin (\pi / 2)) f(O B)=\sin (\angle B O G) f(O B)$. Since $\angle B O G=\angle F O O^{\prime}$, we can find $\sin \left(\angle F O O^{\prime}\right)$ in $\triangle O F O^{\prime}$. In $\triangle O F O^{\prime}$, we have $\sin \left(\angle F O O^{\prime}\right) / f\left(O^{\prime} F\right)=\sin \left(\angle O F O^{\prime}\right) / f\left(O O^{\prime}\right)=\sin \left(\pi / 2^{\prime}\right) / f\left(O O^{\prime}\right)$, so $\sin \left(\angle F O O^{\prime}\right)=f\left(O^{\prime} F\right) / f\left(O O^{\prime}\right)$. If we let $O G=r$, the radius of the small circle, $O^{\prime} F=R$, the radius of the large circle, and $O O^{\prime}=d$, the distance between two centers of two circles, then we have $f(B G)=f(r) f(R) / f(d)$.

Similarly, we can also find $f(D H)$ from $\triangle D H O^{\prime}$ and $\triangle O^{\prime} E O$. Followed by the steps $f(D H)=$ $\sin \left(\angle D O^{\prime} H\right) f\left(O^{\prime} F\right)=\sin \left(\angle D O^{\prime} H\right) f(R)$ in $\triangle D H O^{\prime}$ and $\sin \left(\angle D O^{\prime} H\right)=\sin \left(\angle E O^{\prime} O\right)=f(O E) / f\left(O O^{\prime}\right)=$ $f(r) / f(d)$ in $\triangle O^{\prime} E O$, we have $f(D H)=f(r) f(R) / f(d)$.

Therefore, we showed $f(D H)=f(B G)$, which indicates $D H=B G$ in all three different geometries.

