Problem 9

Yang Yang

February 18, 2017

Given the function $f(f(n))=-n$, we know $f(f(f(f(n))))=n$, so we know f has a s symmetry of order 4 , which means when we apply the operation four times, it goes back to itself. Since we have the operation switching between positive and negative as a symmetry of order 2, we need to find another operation with a symmetry of order 2 such that we can combine them to achieve $f(n)$ which has the symmetry of order 4. Besides the sign of integer, we notice we can group each number with its even or odd complement to form a pair, so the operation switching between even and odd can be an operation with the desired symmetry. However, zero is a special case for the operation switching between positive and negative, because zero neither belongs to negative numbers nor positive numbers, and hence we will treat zero as a special case in the generalization of $f(n)$, after we generalize $f(n)$ on \mathbb{Z}^{*} (all the integers excluding zero).

As the principle stated above, every odd number $2 n-1$ is paired with an even number $2 n$, including their negative pair $-2 n+1$ and $-2 n$, where $n=1,2,3, \ldots$. Therefore, \mathbb{Z}^{*} is partitioned into groups with four elements in each group. If we define $f(n)$ mapping through $2 n-1,2 n,-2 n+1$ and $-2 n$, we can have when n is positively odd, $f(n)=n+1$; when n is positively even, $f(n)=-(n-1)$; when n is negatively odd, $f(n)=n-1$; when n is negative even, $f(n)=-(n+1)$. This can be generalize into a simple function

$$
f(n)=n(-1)^{n}-\frac{n}{|n|} .
$$

At last, we treat the special case 0 by letting $f(0)=0$. Therefore we have the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ as

$$
f(n)= \begin{cases}n(-1)^{n}-\frac{n}{|n|} & n \neq 0 \\ 0 & n=0\end{cases}
$$

