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Differential Geometry of Real Monge-Ampeére Foliations

Robert L. Foote
Department of Mathematics, Texas Tech University, Lubbock, Texas 79409, USA

Introduction

The foliations studied in this paper are those that arise from the Monge-
Ampére condition requiring the Hessian of a function defined on an affine
manifold to have rank that is one less than maximal.

The primary motivation for this study comes from work due to Stoll,
Burns, and Bedford, who have studied Monge-Ampére foliations of complex
manifolds (see [15, 3, 1]).

Much of this paper originally appeared as part of the author’s doctoral
dissertation, [5] which was completed at the University of Michigan under the
direction of Daniel M. Burns. The author would like to express thanks for the
many enlightening discussions with him.

A brief outline of the paper follows, as well as a discussion of applications
to the complex case.

Let Q<" be open and connected, and let u: Q—IR be sufficiently differ-
entiable. (The reader should note that in the last two sections £ is taken to be
a subset of R"*! instead of R" for notational purposes. In this introduction it
may be assumed, except where indicated otherwise, that all functions, surfaces,
vector fields, and forms are C* The exact regularity needed is addressed in the
main body of the paper.) Let H(u) denote the Hessian of u. The real, homo-
geneous, Monge-Ampere equation is

(*) det H(u)=0.
The special cases of (x) of interest are those of constant rank, especially rk H(u)
=n—1.

Theorem A. Let u satisfy tk H(u)=n—k for some 1 <k<n. Then Q is foliated by
k-planes in such a way that u is linear on each leaf of the foliation.

The standard solution of (x) is the function u(x)=(}_ x;)"? defined on Q
=IR"—{0}. Then main properties of the standard solution are a) rk H(u)=n
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—1, b) the leaves of the foliation are transverse to the level sets of u, and ¢) u
is convex. For any solution of (%) satisfying these three properties a canonical

! J . . ) .. . 0 .
vector field E™ is introduced. The covariant derivative S = 175— is a measure of
u u

the “twist” of the foliation, where F is the standard connection on IR". The

S, and the geometry of the foliation are

0
relationships between H(u), e
u

studied. For example:

Theorem B. V'S=0 on Q if and only if the leaves of the foliation are parallel or
meet in a single point when extended. (The operator V is the connection obtained
by restricting V to the level sets of u.)

Note that the foliation of the standard solution has the property in this
theorem, since the leaves are the lines through the origin in R".

The two main theorems of the second section (17 and 18) are characteri-
zations of the standard solution.

Theorem C. Let u satisfy conditions a)-c) above. Suppose that some level set of u
has a compact component, and that VH(u)=0 on Q. Then (after appropriate
affine changes) u is the restriction to Q of the standard solution.

Theorem D. Let Q contain O and be star-shaped with respect to 0. Let u: Q—R
be continuous with u(0)=0, u(x)>0 for x+0, and a solution of (*) on Q—{0}.
Suppose that t=f(u) is strictly convex on a neighborhood V of 0 where f:
R —>IR. Then (after an affine change of coordinates) u is the restriction to £ of
the standard solution.

As an application, the following theorem (due to Burns [3]) is proved. It is
the real counterpart of Stoll’s characterization of balls in €". (See Theorem H

below.)

Theorem E. Let M be a connected n-dimensional affine manifold. Let t:
M—[0,R?%), 0<R=< oo, be proper and strictly convex. Suppose that u=]/;
satisfies (%) on M —1~*(0). Then there is an affine diffeomorphism F: Bp(0)—M,
where Br(0)cIR" is the ball of radius R, such that uoF is the standard solution

of (%)

In the final section Cauchy problems for () are investigated. A feature of
the existence parts of the following theorems is their constructive nature.

Theorem F. Let M cR" be a hypersurface, let ¢, y: M—>R and let N be a unit
normal vector along M. If H,,(¢)+y H(r) is definite on TM, then there exists a
unique function u, defined on a neighborhood Q of M, that satisfies () on & and
u=¢, Nu=y on M. Here H,,(¢) denotes the Hessian of ¢ relative to M, and r:
Q-1 is the signed distance function for M.

Theorem G. Let M cIR™ be a hypersurface with non-vanishing Gaussian curva-
ture. Let w be a one-form along M with =0 on TM and o(X)+0 for vectors X
transverse to M. Then there exists a unique function u, defined on a neighborhood
Q of M, that satisfies conditions a)-c) on Q and u=0, du=w on M.
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Although the subject of this paper belongs to the realm of affine differential
geometry, the relationship between (x) and its complex analog should be
discussed. In particular, some assumptions about the nature of the functions
involved reduce the complex case to the real case, and the techniques and
results of the present paper apply.

Let £ be a complex manifold of dimension n. Let u: Q—IR. The complex,
homogeneous, Monge-Ampére equation is

(%) (00u)"=0,

where ddu is the Levi form of u. If C H(u) denotes the complex Hessian matrix
of u with respect to a local holomorphic coordinate system, then (x*) is
equivalent to

(%) det € H(u)=0.

As in the real case, if tkddu=n—k on Q, then @ is foliated by k-dimensional
complex submanifolds in such a way that u is pluriharmonic on each leaf. The
standard example is u(z)=log|z|* on Q=C"—{0}. The leaves are the complex
lines through the origin. (See [2, 3, 15] for details.)

The following is Stoll’s characterization of balls in C" in terms of solutions
of (#x).

Theorem H. (Stoll [15], Burns [3]) Let M be a connected, complex manifold of
dimension n. Let ©: M—[0,R?), 0<R<=Z o0, be C*®, proper, and strictly plurisub-
harmonic (spsh). Suppose that u=logt satisfies (xx) on M —t~'(0). (Stoll has
called a pair (M,t) with these properties a strictly parabolic manifold.) Then
there is a biholomorphism F: Bg(0)— M, where By(0)=C" is the ball of radius R,
such that uoF is the standard solution of ().

It should be noted that te C® is necessary for the proofs in [15] and [3]
when R <oco. This is in contrast to the real case (Theorem E) where one only
needs te C*. Burns gives an alternate proof of Theorem H for R = oo using only
teC>. It is not known if te C> suffices in general for R < oo. (See Theorem J

below.)
The function u: Q>R is locally Reinhardt if Q can be covered with
coordinate charts on which u is a Reinhardt function. If {=({,, ..., {,) is such a

coordinate system, let z,=log{, locally. Then for the coordinates z=x+iy we
have that u is independent of y=(y,,...,y,), and (*+) becomes (x). With this
reduction from the complex case to the real case the following theorems can be
proved, the details of which appear in subsequent submissions of the author [8,
9]. The first one is a partial solution of a conjecture due to Burns [4, 7].

Theorem L Let M be a complex manifold of dimension n. Let t: M —[0, ) be
spsh and C*. Suppose there is a compact set K =M such that on Q=M —K the
function u=logt satisfies (xx). (A pair (M,t) with these properties is called
strictly parabolic at infinity.) If additionally u is locally Reinhardt on Q and
strictly exterior (a technical generic assumption), then M can be biholomorphi-
cally identified with an algebraic submanifold of C".
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Theorem J. Theorem H holds if “teC®” is replaced by “teC> and u is locally
Reinhardt on M —171(0)”.

General Real Monge-Ampeére Foliations

Let Q<R" be open, and let u: Q—IR be C% The Hessian of u is the symmetric
tensor H(u)=Vdu where V is the standard flat connection on R™ If X and Y
are vectors at a point pe@, then H(u)(X, Y)=(Vydu)(Y)=X(du(Y))— du(Vy Y),
where Y is extended in a smooth way to a neighborhood of p. This definition
makes sense on an arbitrary manifold with a torsion-free connection.

Much of the material in this paper is local in nature, and could take place
on an arbitrary affine manifold, that is, a manifold with a torsion-free con-
nection ¥ whose curvature tensor R(X, Y)=V, V;,— Vy Vy— V[X y; vanishes identi-
cally. The absence of curvature will play an important role in many proofs and

constructions. If (x;,...,x,) is an affine coordinate system on an affine man-
ifold, then 2y
H(u)= Z dx;®dx;.
J
2
The solutions of the real Monge-Ampére equation det ( 6x6u >=0 that
1 0X;

give rise to well-behaved foliations are those of constant rank:

0*u
rkH(u)zrk (5x.6x )—n—k.

Yy

Theorem 1. Let u: Q—-IR be C? with tk Hu)=n—k. Then there is a foliation of
Q by k-planes, such that u is linear on each leaf of the foliation.

Proof. This is well-known (see [117]), but a simple invariant proof is given here.

Let
=ker Hu)={XeTQ|H(u)(X, Y)=0 for all YeTQ}

={XeTQ|V,du=0}.
This is a C! k-distribution (in the sense of differential topology). Let X and Y
be C! sections of & Let Z be an arbitrary C' vector field. Then
H(u) (Z, 7 Y)= (7, duw) (P ¥) =X (7, du) (V) = (P 7 du) (Y)
= —(ﬁz 17Xd“) (Y)_(V[X,Z]du) (Y)=0,

since X, Ye# and there is no curvature. Similarly, H(u)(Z, ¥y X)=0. It follows
that V, Y, ¥y X, and [X, Y] are sections of % Thus & is integrable and the
leaves of the resulting foliation are totally geodesic (see [14], p. 32).

Finally, in directions tangent to the leaves, H(u)=0, and so u is linear (du is
parallel) on each leaf. Q.E.D.

Clearly the domain of u can be made larger by extending the planes of the
foliation beyond Q and by letting u continue to be linear on the planes. This
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will be well-defined and will satisfy rk H(u)=n—k until the planes start to
interest each other. A discussion of this for one-dimensional foliations is taken
up in the next section.

One-Dimensional Foliations

The standard solution of det H(u)=0 is the function u(x)=r(x)=|x| = x)*
defined on Q=R"*'— {0} (note the change in dimension). It is easily seen that
this is a solution by observing that u_ is convex, and so Hu)=0, and that
0 0 0*
1) (5 )

ar’ ar] " ar?

H(u) (ai, X ) =0 for all vectors X, and so rk H(u))<n+1. The level sets of ug
r

r=0, where ai is the radial field. It follows that
r

are strictly convex, thus rk H(u)=n. The leaves of the resulting foliation are
the lines through the origin.

The properties of the standard solution of interest in the remainder of this
section are

(1) @) rk H(u)=n (one less than maximal),
b) the leaves of the foliation are transverse to the level sets of u, and
C) u is convex, that is, H(u) (X, X)=0 for all vectors X.

It will be assumed in the rest of this section, unless otherwise indicated,
that u: Q—IR is a C* function that satisfies (1), where QR"*! is open and
connected. Theorems 17 and 18 characterize u, out of all such functions. Note
that the conditions in (1) imply that the level sets of u are strictly convex, and
that du(X) =0 if X 0 is tangent to the foliation.

Property b) should be thought of as a non-degeneracy condition. Property
¢) will allow the tensor that measures the “twist” of the foliation to be
diagonalized.

When using local coordinates or a local frame, the indices 0, 1, ...,hn will be
used. The index O will be reserved for the leaf direction.

0
Definition 2. Let — be the unique vector field tangent to the foliation for which

P u
— ) =1.
du <6u>

0 0 ~ o
The field ™ satisfies H(u) (8_’ ) =Vy5,du=0. This implies that the tangent
u u
spaces of the level sets of u are parallel at all points on a given leaf. The
0 . .
integral curves of 5, € just the straight lines of the foliation. Since the leaves
u

are geodesics, the field 170/0“5— is tangent to the leaves. But
u

. 0 0 0 - 0
du (Va/au E) :6—u' (du (5{;)) _(Va/au du) (a) :-0,

0
so V. =0, and the flow of " 1s geodesic.
U

8/ou —a_;
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Definition 3. Let &, be the flow of ;—, that is, @: @ x R->R"* 1,
u

0
2.(p)= 0, ) =p+7 | .
u

p
For aeR, let 2, ={peQ|u(p)=a}. Notice that &,: 2,—2,, is a diffeomor-
phism provided that @: X, x [0,r]->IR"*! is a diffecomorphism onto its image.
This is the case for all sufficiently small r when the level sets are compact. The
map @ is clearly the device needed to extend the definition of u outside €. The

0
value of u at q=¢,(p)=p+ré-' should be u(p)+r. For this definition to make
u

sense, g can lie on only one line of the foliation (when extended), and @, must
be a diffeomorphism from some neighborhood of p to some neighborhood q.
More will be said later about extending the domain of u.

Definition 4. Let S= 7%, that is, for XeTQ, let SX =V, —:—u—

This tensor is a measure of the “twist” of the foliation. (Compare this with
the “twist” tensor of Bedford and Burns in [1] and [3].) In particular, S=0 if
and only if the lines of the foliation are parallel. In this case the domain of u
can be extended indefinitely by following the lines of the foliation in both
directions, and the graph of u is a cylinder over any of its level sets.

Clearly, S ai=0. If X is tangent to a level set 2, then
u
. 0 0 - 0
= )= ) =7 —)=0.
du(SX)=du (VX au) X (du (6u)> (Vx du) (au)
Thus SXeTZ, and S will usually be viewed as a map S: T2 ->T2.

Example 5. a) Let X cIR"*! be a strictly convex hypersurface, and let peIR"**
—2. Define u(p)=0, u(Z)=1. For geX and re(0, o), let u((1 —r)p+rq)=r. This
is well-defined if the map X x (0, co)—IR"*1, (¢,¥)>(1 —r)p+rq is a diffeomor-
phism onto its image. Then u or —u satisfies (1). u is convex if p is “inside”
. : J .
2, concave if p is “outside” X. Along the ray r—(1 —r)p +rq the vector 3 1S g
u
—p or p—q. Clearly any two different values can be chosen for u(p) and u(X).

I: TX - TX. When

For solutions of this type, it is easy to show that S= (
u—u(p

p is the origin and X is the unit n-sphere, then u is the standard solution, u(x)

, J . e, O
=r(x)=|x|=(} x7)?, and 5 8 the radial field 3 °n R+,
u r

b) Let X<R"*! be a strictly convex hypersurface, and let N be a smooth
vector field along 2 that is transverse to X, “outward-pointing”, and that
satisfies Py NeTZ for any XeTZ. The map X xR—-R"*', (p,r)»p+rN, is a
diffeomorphism onto some neighborhood of X. On that neighborhood define

0
u(p+rN,)=r. Then u satisfies (1). The field ™ is obtained by parallel-translat-
ing N along the lines r—>p+rN,. “
c) See Corollary 21 below.
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Proposition 6. a) In Example 5a, if X~ is C*, k=2, then u is C*.

b) In Example 5b, if ¥ is C* and N is C*~%, k=2, then u is C*.
Proof. a) This is clear. b) From u(p+rN,)=r, it is seen that u is C*~!, hence
differentiable. The foliation is C*~!, and so the decomposition X =Y+ fN,
YeTZ, is C*~', that is, if X is a smooth vector field, then the vector field Y
and the function f are C*~! From Xu=du(X)=f it follows that du is
C*-!. Q.E.D.

0
The quantities E’ S, and H(u) are similar to the unit normal N, the
u

Weingarten map W, and the second fundamental form II of a hypersurface in a
Riemannian manifold. (See, e.g., [12].) In fact, if Z<R"*! is strictly convex
with outward unit normal N, then the construction of Example 5b yields the

distance function
) { dist(p, )  for p outside X
u fraad

—dist(p, 2) for p inside X.

p _
Along X one has 5—=N, S=W, and H(u)=II. In this context, note that
u

Proposition 6b gives a proof that the distance function for a C* hypersurface is
C* when k=2. (For a more direct proof see [6].)

0
Lemma 7. (Basic properties of S, @, o and H (u))
u

a) S is symmetric with respect to H(u).
b) (2,),(X)=X+rSX.
¢) S((P),(X)=SX.

d) If SX=kX, then S((@,)*(X))=L(¢,)*(X) as long as kr+1+0.

kr+1

€) VyouS=—5S2

£) (Voo HW) (X, Y)=—H(u) (SX, Y).

g) (7yS) Y=(F,5) X.

h) (Vy Hw) (Y, Z) is symmetric in X, Y, Z.
Remark. In b) and c), and wherever else it is necessary, the following con-
vention will be used. If p and g are on the same leaf, then T,2,, and T2,
are identified by affine parallel translation along the leaf. Care must be exer-
cised in this identification, however, since S varies from one level set to
another.

Proof. a) H(u)(SX, Y)—H(u) (X, SY)
=(Vydu) (SX)—(V, du) (SY)
=Y (du(SX))—du(Vy SX)— X (du(SY)) +du(¥, SY)

. . 0 - o 0
=_d“(VYVX£)+d”(VxVYa)
=du(S[X, Y])=0.
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0
b) This follows by differentiating &@,(p)= p+r5—} in the direction XeT,Q.
u

Here SX is computed at p, and the result is translateé to @,(p).
¢) Let a(t) be a curve fitting X eT,£, that is, 6(0)=p, ¢'(0)=X. Then @,00
fits (@,),.(X). It follows that

d (o] d(d
sx== (- ) and  S(®,), X)=— (-— ) .
dt \0u|,)/ =0 dt \OU | 0a)(0/ =0
. 0 0
These are equal since —| =4— .
Ju r u D(p)

d) This follows from b).
e) Let X,eT,Q, and extend it to a field X along the leaf through p by

Xo.(n=(®,),(X,). By ¢), the field SX is parallel along the leaf. Then
(ﬁa/au S) (Xp) = (76/614 (SX)— S(Va/au X))p
= —S(Va/au(XprrSXp))p
=-5’X,,
since ¥ =u —u(p) along the leaf.

f) Let X,YeT,Q, and extend them along the leaf through p by parallel
translation. Then

% d 0 -
(Pryou H@) (X, V) = (H@) (X, V) =5 (P dw) ()
2 7 7 . 0
= (Voo Vi du) (¥) = (Vigjou, xydu) (V) = — H(u) (Vx ou’ Y)

=—H@u)(SX,Y).
g) Let X and Y be parallel fields. Then

([?X S) Y"(ﬁy S)X = ﬁx(SY) - ﬁY(SX)
0 0 0

=l7X7Y51;_7Y ﬁxéaz V[X’Y]$=O.

h) This is true if u is any C 3 function on an affine manifold. Q.E.D.

Since H(u) is positive definite on T2 for each level set 2, the map S:
TY - T has eigenvalues A, < ... <A, which are continuous on Q.

Corollary 8. Let X,,..., X, bean H (u)-orthogonal basis for T, %, consisting of
eigenvectors of S. Extend this basis along the leaf through p by parallel trans-
lation. Then

a) X,,..., X, is an H(u)-orthogonal basis of eigenvectors for T, 2, for every
q on the leaf.

b) The eigenvalues of S are given by 2, = %

au+b,’
b, depend continuously on the leaves. If the level set X, meets all the leaves, then
one can take b, =1, in which case the ay, ..., a, are the eigenvalues on 2.

k=1,...,n, where a, and
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¢) If peZ; and X, ..., X, are H(u) - orthonormal at D, then the matrix for

H(u) in the frame i, X5, X, is diag (O,
through p. Ou

It follows from Corollary 8 that if ¥ is a level set that meets every leaf of
the foliation, then the eigenvalues of S on > determine the eigenvalues on
every other level set.

The eigenvalues of S now have an obvious interpretation. If SX =kX +0

s eens 1 the leaf
a; u+1 anu+1> wong the lea

1
for XeT, 2, then (P_ 104 (X)=X—ESX=O, and so @_,, is not a diffeomor-
1
phism in a neighborhood of p- Thus the level surface {uzu(p)—z} does not

meet the leaf through p. Intuitively, the leaves of the foliation passing through
points near p (at least points along curves in 2, fitting X) intersect in-
finitesimally at @_,,(p). The solution u, when extended along the leaves,
cannot be extended beyond D_ 1 (p). The surfaces {@_ yuP)peX,} for 2, +0
are similar to the surfaces of focal points for a hypersurface in Euclidean space
(see [137], §6). ' .

If 4, <0<4, at p, then the leaf through p is a portion of the line segment

1 0 1 0
between p——_—| and p—— ——| . If the leaf is not this entire segment, the

Ay Ouj, A, Ouj, 1
solution can be extended so that it will be, since the map &: 2y X ( T

1 1 : L . 1 1
_T) —R"*! is a diffeomorphism in some neighborhood of {p} x (—/1_’ —/1—)

1 n 1
Similarly, if the eigenvalues at p are all non-negative or non-positive (resp. all
zero), the solution can be extended so that the leaf through p is a ray (resp. a
line). If this extension is made for all peQ, some multiple-valuedness may occur
and the leaves will form a foliation only in the sense that “nearby” leaves will
not intersect each other.

Everything done up to this point makes sense on an arbitrary affine

manifold M of real dimension n+1, with some modifications. In particular,

0 d
D.(p)=p+r —a—l should be replaced by ?,(p)=Exp, <r a—) where Exp,:
u u

1,M—M is the exponential map determined by the connection ¥ on M. A
hypersurface XM is strictly convex if H(f): TS®TE—R is positive or
negative definite for every local C? defining function f.

If u: M—>R is a solution of (1), then u can be extended to u: M-R, M
<M, so that the leaves all have maximum possible length. The construction of
M’ is intuitively clear. Extend each leaf to the greatest length allowed by the
eigenvalues. Then let M’ be the disjoint union of these leaves with the obvious
affine structure, and extend u linearly along each leaf. Note that this con-
struction avoids the problem of multiple-valuedness mentioned above.,

Definition 9. The solution u is exterior if u takes on arbitrarily large positive
values on each leaf of the foliation.

Corollary 10. The solution u is (or can be extended to be) exterior if and only if
the eigenvalues of S are non-negative.
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Definition 11. An exterior solution is strictly exterior if the eigenvalues of S are
positive.

We now return to the assumption that u: Q>R with Q<R"*! a domain.
The reader is invited to determine which portions of the rest of the paper can
be phrased in terms of an arbitrary affine manifold. Some results, e.g., Theo-
rem 18, are local in nature and need little or no modification. Others, e.g,
Theorem 15, require that a certain family of lines intersect in a single point -
an event that doesn’t necessarily happen in a general affine manifold.

The next two propositions should be compared with [12], p. 36.

Proposition 12. Let ¥ be a connected component of a level set of u. Then S=kI;
T> —TZX, k=0 a constant, if and only if the leaves of the foliation that pass
through X meet, when extended, at a single point peR"*1.

Proof. Suppose S=kI, and consider the map &_,,: Z—-R"*" If XeTZ, then
(P_1)(X)=0 by Lemma 7b. Hence &_,, is a constant map. Let p be its
image. Since @,(q) is on the same leaf (or its extension) as g, it follows that p is
on the extension of every leaf through Z.

Conversely, suppose the leaves through 2 all meet at p. For geZ let N,=q

0 . . . .
—p. Then a—:fN for some function f: ~—IR. Note that f is C? since X is C*
u

d .
and F™ is C% For XeT,x, we have that SX =Vy(fN)=(Xf)N+/X. This is
u

tangent to X, so f must be a constant. Q.E.D.

The sign of k determines whether p will be “inside” or “outside” 2. Along
the leaves passing through X the solution is of the type in Example Sa. If u is

. . . 1
extended up to p, it can be made continuous at p by setting u(p)=u(2)—E.

Proposition 13. Let X be as in Proposition 12, and suppose nz2. If S=fI:
TY - TZ where f: Z—R is C', then f is constant.

Proof. Let X, YeTZ be linearly independent fields on an open set in 2. Then
0=R(X, Y)i
ou

=V, (SY)—V,(SX)—S[X, Y]
=(XN)Y+fV Y=(Y/) X~V X —f[X, Y]
=(X/)Y-(Y/)X.

Since X and Y are independent, it follows that X f=Yf=0. Q.E.D.

Proposition 14. Let X be a level set of u. Suppose that two or more eigenvalues of
S coincide on some open set U<ZX (and hence on all leaves that pass through
U). Then

a) the distribution & consisting of the span of the corresponding eigenvectors

0
and the vector F is integrable, and
u
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b) the common eigenvalue is constant on £ U, where ¢ is a leaf of the
corresponding foliation.

Proof. Suppose /Ik_1</15/1k=...=/1k+l</1k+,+1 on U. Then 1 is C! on U, since
S is C'. For a) it suffices to show that [X, %] €% and [X,Y]e% where X
and Y are sections of % that are always tangent to the level sets of u. Since

i Vorou(SX) = (7310, 8) X + 57,0, X = ~S?X +8V,,,X (by Lemma 7e)
an

VopoulSX) =V (A X)= =22 X + 4,0, X  (by Corollary 8b),
it follows that SV,,, X = AV, X. Thus

3 i i d
S [X %] =S(SX = Vy, X) = ASX — V), X) = [X E]‘

To show that [ X, Y]e%Z, let ZeT3 with SZ=NZ, X+ A Then
AH)(Z,[X,Y])
. 0
= H(u) (Z, Vix. v 5—) (by Lemma 7a)
" ou

=H(u) (Z, ﬁX(SY)_ 17lf(SX))
=Hu)(Z,(X }) Y—(YAX+A[X,Y))
=AHu)(Z,[X, Y]) (since H(u) (X, Z)=H(u) (Y, Z2)=0).

Thus H(u)(Z,[X, Y])=0. Letting Z range through the eigenvectors with eigen-
values different from 4, it follows that S [X, Y]=A[X, Y]
The proof of b) is. the same as that of Proposition 13. Q.E.D.

If X and Y are vector fields tangent to a level set X, define
- 0
Ve Y=V, Y+ H(u) (X, Y)&I'

This is the Gauss equation in the present context. Since
du(Vy Y)=X(du(Y))— (7, du) (Y) = — H(u) (X, 1),

it follows that V, YeTX. It is easy to show that V is a torsion-free connection
on 2. Computing the tangential and normal components of R(X,Y)Z, for
X, Y, ZeTZ, and setting them equal to zero yields

2) R(X,Y)Z=H(u)(Y, Z)SX — H(u) (X, Z)SY

and
(P Hw) (Y, 2)=(Vy Hw) (X, Z).

Here H(u) is considered as a tensor on ~ and

(Vx Hw) (Y, Z) = X (H(u) (Y, Z)) — H(u) (Vy ¥, Z)~ H(u) (X, V;, Z).
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Similarly, (V¢ S) Y =V4(SY )—S(Vy Y ). Since

©) H(w) (Vx Y, Z)=H(u) (Vy Y, 2),
it follows that

4) Vy H(u)=Vy HW)\1 5.

Since the importance of a particular level set 2 is minimal, the operator V
will usually be thought of as having for its domain and range the tensor fields
. . d
on Q that are annihilated when contracted with du or 0
u
As the next two results show, the quantities VS and VH(u) are measures of
the deviation of the solution u from the standard solution

=N

u=r=)2x

Theorem 15. VS=0 on Q if and only if the leaves of the foliation are parallel or
meet in a single point when extended.

Proof. First, suppose that the leaves are parallel or that they meet in a single
point. By Proposition 12 and the observation following Definition 4, it follows
that S=kI: TS —TZ, where k is a constant and X is a connected component of
a level set. Then

(7, S) (Y)=Vy(SY) = S(7y Y) =Vy(k Y) —kVy Y=0.

Conversely, suppose ¥S=0 on Q. Let £ be a connected component of a
level set.

Claim. The eigenvalues of § are all equal and constant on 2.

Proof of Claim. To obtain a contradiction, suppose that A</’ at some point
peZ. Since S is Cl, its eigenvalues are C' in a neighborhood of almost every
point of X. It can be assumed that A and A’ are C* near p. Let X, Y, Z €T, 2, all
non-zero, with SX=1X and SZ=A1'Z. Extend X to a C! field near p so that it
continues to be an eigenvector. It follows then, as in the proof of Proposi-
tion 14, that X' Hu)(Z, Vy X)=AH(u)(Z, Vy X), and so

(5) S(Vy X)=AVy X.

It follows from (2) that R(X,Z)X = —H(u)(X, X)SZ. The left side of this
has eigenvalue A by (5), whereas the right side has eigenvalue A. Thus both
sides are zero and A’ =0, since H(u)(X, X)=+0. Interchanging X and Z yields 4
=0, a contradiction.

It follows that (5) holds for all vectors tangent to X in a neighborhood of p.
Then S(Vy X)=V,(SX)=(Y2) X + AV, X implies that A is constant near p. Since
the eigenvalues are continuous, they are equal and constant on all of %,
completing the proof of the claim.

We now have that for each connected component X of a level set, the map
S has the form S=k(Z)I: TX—TZ. The condition S=0 is a closed condition
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on Q. By the proof of the claim and Corollary 8b, ¥S=0 implies that it is also
an open condition. By connectedness, either §=0 on £, and the leaves are
parallel, or S4+0 on Q. In the latter case, consider the map F: Q-R"!
p—=P_, () for pe2. By Proposition 12, F is constant on each 2. But

0 - 1 0 0 o 1\ 0
* <6u) oo (p k() au) ou (au k(Z)) o
by Corollary 8b. Thus F is constant, and it follows that the leaves all meet at
the image of F. Q.E.D.

Corollary 16. Suppose that VS=0 on Q, S+0, and u is analytic. Then u is the
restriction to Q of a solution of the type constructed in Example 5a.

There are also geometric conditions on € (e.g., convexity) that will guaran-
tee that solutions satisfying V'S=0 and S0 will be of the type in Example 5a.
As an example of a solution not of this type, consider the following:

Let S<IR? be a C* strictly convex loop that contains the semicircle {x”-+
y2=4, x=0} as an arc, and that does not meet the closed unit disk 4. On
IR?—{0}, let u, be the standard solution, and let u, be the solution given by
the construction of Example 5a for which u,(0)=0 and u,(2)=2. Then u; =u,
on {x=0}. Let Q=R?*—({0}u{x*+y*=1, x<0}), and let

g moon AU {x>0}
“lu, on {x<0}—4.
This solution has the property that the leaves, when extended, pass through p

=0, and so PS=0, but it is not the restriction to Q of any solution of the type
in Example 5a, unless X is the circle x? +y*=4.

Theorem 17. (First characterization of the standard solution.) Suppose that some
level set has a compact component, and that VH(u)=0 on Q. Then, in appropriate
affine coordinates and after replacing u by au+b, u is the restriction to Q of the
standard solution.

Proof. Let X, Y, ZeTZ be fields on an open subset of some level set ~. Extend
X,Y,Z to an open subset of Q by parallel translation along the leaves of the
foliation. Using (3), (4), Lemma 7, and VH(u)=0, it is easy to compute that

%Z(H(u)(X, Y)=—H(W)(SX,V,Y)—HW SV, X,Y)—Hw) (Vs X, Y)

HG) (X, Vi, Y),
Z 2 (H (¥, )=~ H) (7,8 X, V)~ H@) (87, X, V)~ H) (SX. 7, V),
and
|2 2] () (x, V) = - (52) (HE (X, V)
—  H) (7o X, Y)— H() (X, Vs, )
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It follows that

0= (iZ—Zi— [—a—, Z]) (Hw)(X,Y)=—-Hw (V;9X, 7).
Ju ou Lou

Hence VS=0 on Q and the lines of the foliation are parallel or they meet in a

single point p.

Let X' be the compact component of the level set in the hypothesis. A
standard fact of differential geometry is that a connected, compact, strictly
convex hypersurface in IR"*! must be a topological n-sphere. The leaves of the
foliation cannot be parallel, for then some leaf would be tangent to X'. Similar-
ly, p cannot be outside X' (that is, in the unbounded component of R+ -3
Thus, p is inside 2, and the eigenvalue of S on X' is positive. Hence, the
eigenvalue function 1: Q—-R is always positive. (As in Theorem 15, if A=0
somewhere, then V'S=0 implies 1=0.) Without loss of generality, u(2")=A4(Z")
=1 (if not, replace u by A(Z") (u—u(2")+1).

Define a Riemannian metric on Q by g=du2+%H ().

Claim. V is compatable with g, that is, Vg=0.

Proof of Claim. Let X, Y, Z be fields that are always tangent to the level sets of
u. Let W be an arbitrary field. Then

Ve g =y du)®@du+du®(Vy du) +;11— Vy H(u).

Contracting with Y and Z,

- [ .
(P ) (X, 2) = (7 Hw) (1, 2) =3 (7 HG) (%, 2) =0,

by hypothesis and (4). Also
N 0 1 . 0
(P (20 W) = H) (X, W) 5 (75 H) (5 w).
This last line is zero since
- 0 ~
(P H(w) (5;, W) (P Hw) (X, W)= — H(w) (SX, W)= — A H(w) (X, W)

by Lemma 7f, h. Finally,

- l . 1
Va/aug:H(“)*‘E Vﬁ/auH(u)—__H(u)+—/»L_(_AH(M))=O’

by Lemma 7f, Corollary 8b, and the fact that du is parallel along the leaves.
This completes the proof of the claim.

Since V is torsion-free, it is the unique Levi-Civita connection for the metric
g. It follows that g can be defined on all of R"*?, since orthonormal frames

can be translated unambiguously via V. Then (R"*', g) is Euclidean space, 30 is
u
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the unit normal on each level set X, and S: TX—TZX is the Weingarten map.
Each point of X is umbilic (S=A(2)I on X), so 2 is a subset of the Euclidean

1 . .
sphere with center p and radius I(—Z—) (see [12], p. 36). Choose affine coordinates
on R"*1 so that p is the origin, and the g-sphere centered at p with radius R

0 0
has equation Y x7=R? Then P and du=dr on @, so u=r+C on Q. But
u or

2" is the sphere of radius 1, so C=0 and u=r on Q. (Note this implies that 2’
is the only component of {u=1}) Q.E.D.

In the next two theorems the conditions of (1) are not assumed.

Theorem 18. (Second characterization of the standard solution.) Let QcR™H!
be open containing the origin and star-shaped with respect to the origin. Let u:
QR be continuous with u(0)=0, u(x)>0 for x=+0, and a C* solution of
det Hu)=0 on Q—{0}. Suppose that t=f(u) is C* and strictly convex on a
neighborhood V of 0, where f: R—>R is C* and f(0)=0. Then, in appropriate
affine coordinates, u is the standard solution of (1) and t=f(u)=au’+O0(u*),
a>0, near u=0. :

Proof. The hypotheses clearly imply that 7 has a local minimum at 0, and that
for sufficiently small ¢>0, the level sets {t=¢} are strictly convex n-spheres
containing the origin. These are also the level sets of u, so rk H(u)=n. Then
det H(u)=0 implies that u satisfies (1) on V—{0}. Since the leaves cross the
level sets transversally, all leaves passing through points near O must meet at 0.
Then, on a perhaps smaller punctured neighborhood of 0, u is a solution of the
type in Example 5a, and is C* there, since its level sets are C*. Also S-——i[ on
2, for sufficiently small u.

Given det H(u)=0, having u satisfy (1) is an open condition. On any ray
starting at the origin it is also a closed condition, since H(u) can be put in the

1 1
form diag (O,—, ...,-) on any ray where (1) holds (this is a modification of
u u

Corollary 8c). If y(t) is a geodesic with y(0)=0 and if (1) holds on y for 0 <t <r,
then H(u) cannot drop rank at y(r), so (1a) holds. The foliation thus extends to
(). Since du+0 on the foliation, (1b) holds. The Hessian H(u) cannot change
signature, and so (1c¢) holds. In addition, the level set through y(r) is C*, since
it is determined by the level sets through y(¢) for ¢t <r and the map &, which
are all C* The solution continues to be of the type in Example 5a, and so it is
C*. Since Q is star-shaped, each ray through 0 meets Q in a connected segment
or ray, and so (1) holds on all of Q. In fact, the solution can be extended to all
of R**1,

Since du cannot be defined at 0 (in particular du+0 at 0), and dt=f"(u)du
is continuous at 0, it follows that f'(0)=0. On V—{0} we compute that

(6) H(v)=f"(w)du® + f"(u) H(u)

and
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o) o) =@ + ()=, f0)) @)

At 0, H(t) is positive definite, and so f"(0)>0 by (6).
Let £ and ¢’ be opposite leaves of the foliation in the sense that their union

. S o 0 .
is an affine line through 0. Let —, —eT,R"*! be the limiting values of 9
ou, du, du

0 0
along ¢ and ¢’ at 0: —= —c —— for some ¢>0. By (6),
Ju, Uy

HE (o) =H) (ai 2 )=r@+o,

B
du, Ou, U, Ou,

. J0 0
and hence ¢=1. By (7), (V5 H (7)) (a—u, 55) = f""(u). Evaluating this on 7 and ¢’

and letting u tend to zero yields f/(0)=0. Hence t=f(u)=%/"(0)u? +0(u*).
Let p be the point on ¢ where u(p)=1, and let X, €T, ;. Let X =uX, along

Ju
parallel fields that are tangent to the level sets along /. Then

- 1 . 0 0
¢ Then V,, X=X =-X=8SX=V,—, so | X,=—|=0. Let Y and Z be global
0/0u 14 u Xau

H(x) (Y, Z)=f"(u) du(Y) duw(Z) + f"(u) H() (Y, Z).
Differentiating this one finds, along Z, that '
®) (Py H@) (Y, Z)=f"(w) (P Hw) (Y, 2).

Note that this tends to zero at the origin, since X =0 there and 7 is Cc*,
Let g(u)=(Vy H(u)) (Y, Z) along ¢. Then

L - L 5,
&)= (700 Ve H@W)) (¥, Z) = (P Voo, H ) (Y, Z) (since % |- 0)
= X (7 HO) (. 2) =~ X (0 (1,2)) (by Lemma 71)

_ Lo B (D= g
u U

Then g(u)=§ for some ceR, and (VyH(x)(Y, Z)=§f’(u)=cf”(0)+0(u2). It

follows from the remark after (8) that c¢=0. Hence (VyH(u)(Y,Z)
=(Vy Hw)) (Y, Z)=0, that is, VH(u)=0 on R"*' —{0}.

The result now follows from Theorem 17. Note that perturbing f(u) by
O(u*) does not affect any of the proof, so there are no additional restrictions

on f(u). Q.E.D.

If u is any solution of the type in Example 5a in a neighborhood of 0, and
f: R—>R is any function with f'(x)>0 and f”(x)>0 for x>0, then f(u) is
strictly convex away from 0. The point of the theorem is to see the implication
of extending the strict convexity to the origin.
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As an application, we give a proof of the following theorem due to Burns
[3]. It is the real version of Stoll’s characterization of balls in C" (See
Theorem H of the introduction.)

Theorem 19. Let M be a connected (n+ 1)-dimensional affine manifold. Let t:

M—[0, R}, 0<R< o be C* proper, and strictly convex. Suppose that u=]/;
satisfies det Hwu)=0 on {t#0}. Then there is an affine diffeomorphism F:
Br(0)—M, where Bp(0)={xeR"*!: |x|<R}, such that uoF is the standard
solution of (1).

Proof. From dt=2udu and H(t)=2du?+2u H(u), it follows that u satisfies (1)
on {u=+0}. Since {0<t<r?} is compact in M for r <R, T must take a minimum
on this set. It clearly doesn’t take it on the boundary {t=r?}, so it must take it
at an interior point. Since dt=2u du=+0 for u40, the minimum must occur at
a point where t=u=0. Let pe{r=0}. Since 7 is strictly convex, p is an isolated
critical point. On a small star-shaped neighborhood V of p, Theorem 18 ap-
plies, and there is an affine coordinate chart G: V—-R"*! such that G(p)=0
and u is the standard solution in these coordinates.

Let ¢ be a leaf of the foliation that passes through p when extended. For
t>0 let y(¢) be the point on ¢ where u(y(t))=t; y is defined for all small values

0
of t. Then v is a geodesic, and y(t)=—| . If y is defined for all t <r <R, then y
(1)
is defined for t=r by the compactness of {0 <u <r}. Since geodesics can always

be extended, y(¢) is defined for some values of t>r. It follows that y(f) is
defined for all 0<t<R, and that u takes on all the values in (0, R) on each leaf
that passes through p. The union of the leaves that meet at p is therefore a
maximal open connected set in M, and so it is all of M by connectedness. (It
follows that p is the only point in {t=0}.)

Let Exp,: T,M—M be the exponential map for the affine structure. It is
affine, and Exp, 'oG~" induces an affine coordinate system on T, M. Let Bg(0)
be the ball of radius R in these coordinates. The preceding paragraph proves
that the domain of Exp, is precisely Bg(0), and, in fact, that Exp,: Bg(0)—>M is
a diffeomorphism (since it is one-to-one). Then F=Exp, is the desired
map. Q.E.D.

62
Applications to the Cauchy Problem for det ( ? )=0
0x;0x;

Let McRR"*! be a hypersurface, and let ¢, ¥: M—>R. We seek a function u
defined on a neighborhood of M that satisfies

9) u=¢ and Nu=y on M, and detH(u)=0 near M,

where N is the unit normal to M.

In general, solutions of (9) may not exist even for C* or C® data. However
conditions can be placed on M, ¢, and ¥ that will guarantee existence and
uniqueness of solutions to (9) by forcing properties similar to (1a, b).
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It should be noted that Definitions 2, 3, and 4, Examples 5, and Proposi-
tion 6 are still valid when (1) is replaced by (1a, b). Note that conditions (la, b)
imply that H(u) is definite on TZX for any level set X of u.

In general, solutions of rk H(u)=n do not need to satisfy (1b), since it is
possible for a level set to contain a leaf of the foliation.

Let r be the distance function for M: r(p+sN,)=s for pe M and seR near
zero. The Gauss equation defines a connection V on TM:

Vy Y= Ve Y+ H(r)(X,Y)N.
The Weingarten map for M is given by
W: TM—-TM, W(X)=V,N. (See[12])
The Hessian of a C? function ¢: M >R is defined by
Hy () (X, Y)=(Fydo) (Y)=X({do(Y) —do(Vx Y).

Here X, YeTM and Y is extended in an arbitrary manner to be a local C! field
tangent to M. .
The next result should be compared with Proposition 1.5 of [1].

Proposition 20. Let M and ¢ be C3, and W be C2 If H,(¢)+y H(r) is definite
on TM;, then there exists a unique C?* solution u of (9).

Proof. Suppose that such a function u exists. If XeTM, a few simple com-
putations show that du(X)=de(X), du(N)=y, Hu)(X, N)=dy(X)—de(WX),
and H(u)=H,/(p)+y H(r) on TM. It follows that rk H(u)=n, and that the
leaves of the foliation are transverse to M (in [1], M is said to be non-
characteristic for u). At each point of M there is a unique vector ZeTM so
that Z+ N is tangent to the foliation. Then for XeTM it follows that
H(u)(X,Z+ N)=0, that is,

(Hy(9) +¥ H) (X, Z)=do(WX) —dy (X).

This condition, which is free of the unknown function u, uniquely de-
termines Z as a C! vector field tangent to M. The function u can then be
defined by

(10) u(p+r(N+2)=0@)+r(de(2)+y).

(Compare this with the construction in Example 5b.) This is C* by an argu-
ment similar to that of Proposition 6b. It is an easy matter to show that u
satisfies (9). Note that du(N+2Z)=de(Z)+y. When this is non-zero, the so-

0 Z+N
lution u satisfies (1a, b), and — - . When do(Z)+y =0, the leaf of

du_ do(Z)+y
the foliation is contained in a level set. Q.E.D.

The solution u constructed here depénds smoothly on the Cauchy data ¢

and ¥ in the following sense. Suppose that M is C* and that ¢, and ¥,, |t|<é,

are one-parameter families of Cauchy data of regularity C* and C*~! respec-
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tively, k=3. If ¢, and y, satisfy the hypothesis of Proposition 20, then so will
@, and y, for all te(—¢, ¢), when ¢ is chosen sufficiently small. For each fixed ¢
there is a solution u,e C*~! of (9) given by (10). From the construction in the
proof, it is seen that the family of solutions u, is at least C*~2. Making the
dependence of u, @, ¥, and Z on ¢ explicit in (10), differentiating with respect to

t, and using 17 iz P
)=t () finee e
du‘(dt) Q, T since 7 eTM),

(L) o4+ Z)=5 oo (50 0+ 52).

it follows that

du, . . .
Thus — is C*~2, and so u, is C*~! as a one-parameter family.

The following special case is useful in guaranteeing solutions of (1) with
nice properties. ‘

Corollary 21. Let X be a C? hypersurface in R"*' with non-vanishing Gaussian
curvature. Let w be a C* one-form along X with w=0 on TX and w(X)=*0 for
vectors X transverse to X. Then there exists a unique C* solution u of (1a,b) on
a neighborhood of 2 with u=0 and du=w on 2.

Proof. Let M=%, ¢=0, and Yy=w(N)+0 in Proposition 20. The curvature
condition implies that H(r) is definite. The surface only needs to be C? since
the operators Hy and W do not enter. Q.E.D.

In the corollary, the tangent space to the leaf through peX is given by 7
= () Vyw, which is one-dimensional and transverse to X by the curvature
XeTpZ2
pZ : N 0 . :
assumption. One gets that H(u)=Vw along X, and that ™ is the unique vector
u

0 :
in £ with (a—) =1. If X is strictly convex, then the eigenvalues of S: TX > TX
u

are defined, and so the maximum domain for u can be written in terms of the
Cauchy data. In particular, explicit conditions on the Cauchy data exist that
will guarantee that the solution u be exterior or strictly exterior.
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