Math 225
 Final Exam
 Name:

 Wabash College, Arctic Campus

 13 December 2010
 200 Points

 "Show enough work to justify your answers."

**READ CAREFULLY:** Do at least **ten** problems. If you work on more than ten, you will get credit for the best ten, however you must do at least one max/min problem, at least one multiple integral problem, and at least one path integral problem (these sections are marked). Note that some problems have multiple parts. (20 points each)

**READ CAREFULLY:** You may use *Mathematica* to help you think on any problem. You may use it as part of your solution **only** on the indicated problems. If you need help with *Mathematica*, please ask.

Part I, Max/Min. Do at least one problem from this part.

- 1. Let  $f(x, y, z) = y^2 2xy + \frac{x^3}{3} + z^2$ .
  - (a) Find all critical points of f (there is more than one). (8 points)
  - (b) For each critical point, determine if it is a local max, local min, or saddle point. (12 points)
- 2. Find the maximum and minimum values of  $f(x, y) = x^2 2x + y^2$  and their locations on the disk  $x^2 + y^2 \le 4$ .
- 3. Let C be the curve of intersection of  $z^2 = x^2 + 4y^2$  and x + 2y + 3z = 6. The point of this problem is to find the points on C that are closest to and farthest from the origin. You may use *Mathematica* for all calculations. See the templates in MaxMinFest.nb in the N:/Math/Math225 folder.
  - (a) Clearly write the algebraic, scalar equations that you would need to solve if you were to find the critical points by hand. (7 points)
  - (b) Use *Mathematica* to solve the equations. *Mathematica* can get the exact values, but they are horrible, so get numercal approximations. Write the solutions here. Ignore those involving complex numbers. (7 points)
  - (c) Make your conclusions. Since I won't see your *Mathematica* work, give enough information to justify your conclusions. (6 points)

Part II, Multiple integrals. Do at least one problem from this part.

- 4. Let S be the solid region given by  $0 \le z \le y \le x \le 1$ . Find the volume of S and the x-coordinate of its centroid.
- 5. Let S be the solid region that is inside both the sphere  $x^2 + y^2 + z^2 = 4$  and the cone  $z^2 = x^2 + y^2, z \ge 0.$ 
  - (a) Express the following integral in ready-to-evaluate form in either cylindrical or spherical coordinates.

$$\iiint_S \frac{1}{x^2 + y^2 + z^2} \, dV$$

- (b) Evaluate your integral in part a). If it is in cylindrical coordinates, you may use *Mathematica*. If it is in spherical coordinates, evaluate it by hand.
- 6. Let *D* be the parallelogram enclosed by the lines 2x + y = 1, 2x + y = 4, x y = -1, and x - y = 1. Evaluate the following integral by changing it to (u, v) coordinates where u = 2x + y and v = x - y. Recall that  $\frac{\partial(x,y)}{\partial(u,v)} = 1/\frac{\partial(u,v)}{\partial(x,y)}$ .  $\iint_D (2x + y)^2 e^{x-y} dA$

Part III, Path integrals. Do at least one problem from this part.

- 7. Let C be the circle  $x^2 + y^2 = 4$  oriented counterclockwise. Evaluate the following.  $\int_C -(x^2 + y^2)y \, dx + (x^2 + y^2)x \, dy$
- 8. Let C be the boundary of the quarter disk  $x^2 + y^2 = 4$ ,  $x, y \ge 0$  (this has three parts). Evaluate the following.
  - $\int_C x \, ds$
- 9. Let C be the parallogram with vertices (0,0), (4,0), (5,2), (1,2), oriented counterclockwise. Use Green's Theorem to evaluate the following.

$$\int_C (3y + \sin x^2) \, dx + (5x - e^{y^2}) \, dy$$

## Part IV, Other problems.

- 10. Consider the plane determined by the points A(5,0,0), B(6,0,2), and C(5,1,3).
  - (a) Find an implicit equation of the plane.
  - (b) Let  $\ell$  be the line passing through the points P(1, 1, 0) and Q(2, 0, -2). Find the point where  $\ell$  intersects the plane. Suggestion: Parameterize the line.
- 11. Suppose  $\mathbf{v} : \mathbb{R} \to \mathbb{R}^n$  is a differentiable vector function.
  - (a) Compute an expression for  $\frac{d}{dt} \|\mathbf{v}(t)\|^2$  in terms of  $\mathbf{v}(t)$  and  $\mathbf{v}'(t)$ . For full credit, your computation must be coordinate-free.
  - (b) Use your answer in part a) to prove that  $\mathbf{v}(t)$  has constant length if and only if  $\mathbf{v}(t)$  and  $\mathbf{v}'(t)$  are always perpendicular.
- 12. Level curves of a function f are shown.
  - (a) Draw the four flow curves of  $\nabla f$  that pass through (0, 2), (0, 3), (0, 4), and (0, 5). (16 points)
  - (b) Draw the flow curve of  $\nabla f_{\perp}$  that passes through (0, 1). (4 points)

There will be very little partial credit on this problem.



- 13. Let S be the surface in  $\mathbb{R}^3$  given by  $yz^3 + x^2z = 1$ . Observe that the point P(2, -3, 1) is on S.
  - (a) Find an implicit equation of the plane tangent to S at P. (10 points)
  - (b) Use the Implicit Function Theorem to explain why S determines z as some differentiable function of x and y, z = g(x, y), near P. (5 points)
  - (c) Find the best affine (HS linear) approximation of g at (x, y) = (2, -3). (This is closely related to the equation of the plane tangent to S at P.) (5 points)

- 14. Let  $f(x, y) = x^2 y$ , P(1, 2), and  $\mathbf{v} = -\mathbf{i} + \mathbf{j}$ . Compute  $D_{\mathbf{v}} f(P)$  in two ways. (10 points each)
  - (a) Using the definition of  $D_{\mathbf{v}}f(P)$ .
  - (b) Using the gradient of f.
- 15. Let  $F(x, y, z) = (y^2, xz, \ln y)$  and P(2, 1, 3). Let L be the best affine (HS linear) approximation to F near P.
  - (a) Give a formula in coordinates for L(x, y, z). (15 points)
  - (b) What is L(2.2, .9, 3.1)? (5 points)
- 16. For each vector field, determine if it is a gradient. If it is, find a function f so that the vector field equals  $\nabla f$ .

(a) 
$$\mathbf{F} = 2xy\mathbf{i} + x^2\mathbf{j}$$
 (b)  $\mathbf{G} = xy\mathbf{i} + x^2\mathbf{j}$ 

- 17. Consider coordinates (s,t) given by  $(x,y) = F(s,t) = (s^2 t^2, st)$ . Some of the coordinate curves are shown below in the (x, y)-plane.
  - (a) Plot the point P = F(2, 1). (2 points)
  - (b) Compute formulas for the unnormalized coordinate vector fields  $\mathbf{v}_s$  and  $\mathbf{v}_t$ . (8 points)
  - (c) Compute  $\mathbf{v}_s$  and  $\mathbf{v}_t$  at P and add them to the picture. Draw them to scale and label. (5 points)
  - (d) Clearly indicate which coordinate curves are s-curves (on which t is constant) and which are t-curves (on which s is constant). (5 points)



Have a good break!

Partial answers and hints.

- 1. There are two critical points. One is a saddle; one is a local min.
- 2. The min is -1; the max is 8.
- 3. Closest: (0.40716, 0.676633, 1.41319). Farthest: (-3.12701, -0.992902, 3.70427).
- 4.  $V = 1/6, \, \bar{x} = 3/4$
- 5. Try both coordinate systems.  $2\pi(2-\sqrt{2})$
- 6. 7(e 1/e)
- 7.  $32\pi$ . There is a way to do this that involves very little computation.
- 8.6
- 9.16

10. (a) 2x + 3x - z = 10 (b) (6, -4, -10)

- 13. (a) 4(x-2) + (y+3) 5(z-1) = 0(c) Solve (a) for z to get  $\ell(x,y) = 1 + \frac{4}{5}(x-2) + \frac{1}{5}(y+3)$ .
- 14. -3
- 15. (b) (.8, 6.8, -.1)
- 16. One of them is the gradient of  $x^2y$ . The other is not a gradient.