12 December 2007 200 Points *"Show enough work to justify your answers."*

READ CAREFULLY: Do any **ten** problems. If you work on more than ten, you will get credit for the best ten. Note that some problems have multiple parts. (20 points each)

READ CAREFULLY: You may use *Mathematica* to help you think on any problem. You may use it as part of your solution only on the indicated problems. Save your *Mathematica* work. Indicate the problem numbers. Send your *Mathematica* file to me by e-mail.

READ CAREFULLY: Please do each problem on a separate sheet of paper, except as noted. Avoid writing anything in the upper left corner where the staple will go.

- 1. Given $P(3, -1, 2), Q(0, 0, 2), R(1, -1, 3),$ and $S(5, -3, 2),$
	- (a) Find a non-parametric equation of the plane passing through P , Q , and R , and
	- (b) Find the distance from S to the plane.
- 2. State and prove the formula that expresses the acceleration of a $C²$ curve as a linear combination of its unit tangent and normal vectors.
- 3. If $f: \mathbf{R} \to \mathbf{R}$ is differentiable at $a \in \mathbf{R}$, the best linear approximation (in the high school sense) of f near a is, of course,

$$
f(x) \approx \ell(x) = f(a) + f'(a)(x - a).
$$

In this case, the derivative is represented by a scalar, and the product of the derivative and the displacement $x - a$ is multiplication of numbers. Write the corresponding formulas for

- (a) A curve $\gamma : \mathbf{R} \to \mathbf{E}^n$ that is differentiable at $a \in \mathbf{R}$,
- (b) A scalar function $f : E^n \to \mathbf{R}$ that is differentiable at $P \in E^n$, and
- (c) A mapping $F: \mathbb{R}^n \to \mathbb{R}^k$ that is differentiable at $P \in \mathbb{R}^n$.

In each case, describe the mathematical object that represents the derivative and the type of product between the derivative and the displacement.

4. Find the points on the ellipse $x^2 + 4(y-3)^2 = 4$ where the position vector from the origin is tangent to the ellipse. You may use *Mathematica* for the algebra, although it can be done by hand.

- 5. Let $T(\theta, \phi) = 3\mathbf{u}(\theta) + \mathbf{v}(\theta, \phi)$, where $\mathbf{u}(\theta) = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}$ and $\mathbf{v}(\theta, \phi) = \cos \phi \mathbf{u}(\theta) + \mathbf{v}(\theta, \phi)$ $\sin \phi$ **k**. This is the torus map we have used several times. Find an equation, either parametric or non-parametric, of the plane tangent to the image of T , that is, tangent to the torus, at the point where $(\theta, \phi)=(\pi/4, \pi/4)$. (Think about what kind of geometric information you get about the tangent plane from the partial derivatives.)
- 6. Suppose that $w = g(u, v)$ is a differentiable function of $u = x/y$ and $v = z/y$. Show that

$$
x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} + z\frac{\partial w}{\partial z} = 0.
$$

- 7. (a) Define what it means for a curve γ to be a flow curve of a vector field **F**. (8 points)
	- (b) Consider the vector field on \mathbb{R}^2 given by $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$. Use "guess and check" methods to find formulas of two flow curves of **F**, one passing through (3, 0), and one passing through (0, 5). Suggestion: Sketch enough of the vector field to get an idea of what it looks like. Don't forget the "check" part of "guess and check"! (12 points)
- 8. Consider polar coordinates in the xy -plane.
	- (a) Draw a representative sample of coordinate curves. Label each curve with its polar coordinate equation (some variable equals a constant).
	- (b) Compute formulas for the non-normalized coordinate vector fields \mathbf{v}_r and \mathbf{v}_θ .
	- (c) Draw \mathbf{v}_r and \mathbf{v}_θ on your coordinate curves at a minimum of four different locations. Your vectors should be to scale.
- 9. Logarithmic polar coordinates (ρ, θ) in \mathbb{R}^2 are given by $x = e^{\rho} \cos \theta$ and $y = e^{\rho} \sin \theta$. These are similar to regular polar coordinates except that $\rho = \ln r$. If f is a function and $\mathbf{F} = P\mathbf{u}_{\rho} + Q\mathbf{u}_{\theta}$ is a vector field, both being functions of ρ and θ , then ∇f and div **F** are given by

$$
\nabla f = e^{-\rho} \frac{\partial f}{\partial \rho} \mathbf{u}_{\rho} + e^{-\rho} \frac{\partial f}{\partial \theta} \mathbf{u}_{\theta} \quad \text{and} \quad \text{div } \mathbf{F} = e^{-\rho} \left(\frac{\partial P}{\partial \rho} + P + \frac{\partial Q}{\partial \theta} \right),
$$

where \mathbf{u}_{ρ} and \mathbf{u}_{θ} are the unit coordinate vectors in this coordinate system. Compute $\Delta f = \nabla^2 f$ in this coordinate system.

- 10. Let $f(x, y, z) = kx^2 + ky^2 + 2yz z^2$. This function has a critical point at $(0, 0, 0)$. You do not need to verify this. For what values of k does
	- (a) f have a nondegenerate local minimum at $(0, 0, 0)$?
	- (b) f have a nondegenerate local maximum at $(0,0,0)$?
	- (c) f have a saddle point at $(0,0,0)$?
	- (d) The second derivative test fail?

Suggestion: Start with part (d). Then consider the intervals on which (d) does not hold.

- 11. Find the maximum and minimum values of $f(x, y, z) = x^2 2x + y^2 + 4y + z^2 2z$ and their locations in the solid ball $x^2 + y^2 + z^2 \leq 9$. You may use *Mathematica* to do the algebra.
- 12. The surface $\rho = \sin \phi$ (spherical coordinates) is pictured. Note that any plane that contains the z-axis slices this surface in two circles. The circles are tangent to each other and to the z-axis at the origin. Find the volume of the solid contained by this surface. You may use *Mathematica*.

13. The z-coordinate of the centroid of a solid S in \mathbb{R}^3 is given by $\bar{z} = \frac{1}{V} \iiint_S z dV$, where
V is the volume of S. Let S be the upper half (above the *xu*-plane) of the solid torus V is the volume of S. Let S be the upper half (above the xy -plane) of the solid torus given in cylindrical coordinates as $(r-3)^2 + z^2 = 1$ (this is the same torus as in the last problem set). Compute \bar{z} for this solid. You may use *Mathematica*. (Note that $\bar{x} = \bar{y} = 0$ by symmetry.)

- 14. Evaluate $\int_C r^2 ds$ where C is the graph of $y = \cos x$ in \mathbb{R}^2 from $x = -\pi/2$ to $x = \pi/2$
and x is distance to the origin. You may use *Mathematica* (you may need to use and r is distance to the origin. You may use *Mathematica* (you may need to use **NIntegrate**).
- 15. Consider the vector field on **R²** given by **F** = $-\frac{y}{x^2 + y^2}$ **i** + \overline{x} $\frac{d}{dx^2 + y^2}$ **j**. Suppose that C is a simple, piecewise $C¹$, loop going around the origin counterclockwise. The point of this problem is to evaluate $\int_C \mathbf{F} \cdot dX$.
	- (a) Suppose that \tilde{C} is the circle of radius r centered at the origin oriented counterclockwise. Evaluate $\int_{\tilde{C}} \mathbf{F} \cdot dX$.
	- (b) Show that $\int_C \mathbf{F} \cdot dX = \int_{\tilde{C}} \mathbf{F} \cdot dX$ by applying Green's Theorem to the annular parties between C and \tilde{C} region between C and \tilde{C} .

Please put your pages in order before stapling and be sure the problem numbers are in the upper right corners.

Have a good break!

Selected answers and hints.

- 1. (b) $2\sqrt{14}/7$
- 3. (a) $\gamma(t) \approx \gamma(a) + (t a)\gamma'(a)$ The derivative is a vector, and the product between $\gamma'(a)$ and $t - a$ is scalar multiplication.
- 4. $(\pm 4\sqrt{2}/3, 8/3)$ This can be done either by parameterizing the ellipse or by considering the ellipse to be a level curve of a function. Using an appropriate derivative, write a condition that says the position vector is tangent to the curve.
- 5. Parametric: $(x, y, z) = \left(\frac{3\sqrt{2}}{2} + \frac{1}{2} t(1 + 3\sqrt{2}) s, \frac{3\sqrt{2}}{2} + \frac{1}{2} + t(1 + 3\sqrt{2}) s, \frac{\sqrt{2}}{2} + s\sqrt{2}\right)$
- 7. (b) $\gamma(t) = (5 \cos t, 5 \sin t)$ passes through $(0, 5)$
- 9. $\nabla^2 f = e^{-2\rho} \left(\frac{\partial^2 f}{\partial \rho^2} + \frac{\partial^2 f}{\partial \theta^2} \right)$
- 10. (a) This doesn't happen for any k .
	- (c) This happens when $k > -1$ and $k \neq 0$.
	- (d) The test fails when k is 0 or -1 .
- 11. Maximum: $9 + 6\sqrt{6}$. Minimum: −6. If you get a different minimum, you may have missed one of the critical points.
- 12. $\pi^2/4$
- 13. $4/(3\pi)$
- 14. Approx 5.21081
- 15. 2π