Math 225 Final Exam Name:

12 December 2005 200 Points "Show enough work to justify your answers."

READ CAREFULLY: Do any **ten** problems. If you work on more than ten problems, you will get credit for the best ten. Note that some problems have multiple parts. If you use *Mathematica*, be very clear what you use it for, and show enough work that I can tell what you are thinking. Give exact answers when possible. Write integrals in ready-to-evaluate form before using *Mathematica*. If you have any question about what constitutes sufficient work, be sure to ask. Please do each problem on a separate page. Avoid writing anything in the upper left corner where the staple will go. (20 points each)

The topics are arranged roughly in the order we studied them.

- 1. Consider the plane determined by the points A(0,2,0), B(1,3,0), and C(2,1,1).
 - (a) Give parametric and implicit equations of the plane.
 - (b) Let l be the line passing through the points P(1, 1, 0) and Q(2, 0, -1). Find the point where l intersects the plane. Suggestion: Parameterize the line.
- 2. Suppose $\mathbf{v}: \mathbf{R} \to \mathbf{R}^{\mathbf{n}}$ is a differentiable vector function.
 - (a) Compute an expression for $\frac{d}{dt} \|\mathbf{v}(t)\|^2$ in terms of $\mathbf{v}(t)$ and $\mathbf{v}'(t)$. For full credit, your computation must be coordinate-free.
 - (b) Use your answer in part a) to prove that $\mathbf{v}(t)$ has constant length if and only if $\mathbf{v}(t)$ and $\mathbf{v}'(t)$ are always perpendicular.
- 3. Consider the parameterization of the parabola $x = y^2$ given by $x = t^2$ and y = t. Compute the curvature as a function of t. Make a reasonably accurate and appropriately sized sketch of the parabola for $-2 \le t \le 2$. For t = 0 add the vectors **T** and **N** and the osculating circle to the sketch. Be sure everything is to scale.

4. Use the formula
$$\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \kappa \left(\frac{ds}{dt}\right)^2 \mathbf{N}$$
 to prove $\kappa = \frac{\mathbf{a} \cdot \mathbf{v}_{\perp}}{\|\mathbf{v}\|^3}$ for a curve in \mathbf{R}^2 .

5. (112) Let $f(x, y) = ye^{2x} \cos y$. Let P be the point $(0, \pi/4)$. Give a formula for the best linear approximation of f near P, and use it to approximate the value of $f(-.2, \pi/4 + .3)$.

- 6. Consider the surface xyz = 1. Show that the position vector of a point on the surface (the vector from the origin to the point) is never tangent to the surface. (Hints: What vector is normal to the surface? How can you tell if a vector is tangent to the surface?)
- 7. Let $f(x,y) = |x^2 y^2|$. Determine, with proof, if f is differentiable at (0,0).
- 8. Consider the function $f(x, y) = x \frac{1}{2}y^2$.
 - (a) Make a reasonably accurate and appropriately sized sketch of the five level curves of f corresponding to the values -2, -1, 0, 1, 2. Label each curve with its value.
 - (b) A large family of bugs is out for a walk on the xy-plane. Each bug walks in the direction that f increases most quickly. Draw arrows at several points indicating the direction a bug would go at that point.
- 9. (112) Find the global maximum and minimum values of $f(x,y) = x^2 x + 2y^2$ on the closed unit disk $x^2 + y^2 \le 1$.
- 10. (112) Let $f(x, y) = kx^2 + 2xy + ky^2$. This function has a critical point at (0, 0). You do not need to verify this. For what values of k will f have a
 - (a) Nondegenerate local minimum at (0,0)?
 - (b) Nondegenerate local maximum at (0, 0)?
 - (c) Saddle point at (0,0)?
- 11. (112) Write $\int_0^2 \int_{x^2}^{2x} (x 3y^2) dy dx$ with the order of integration reversed. Evaluate one of the integrals by hand. You may leave the answer as a sum of fractions.

- 12. Consider the solid S in \mathbb{R}^3 that is above the xy-plane, inside the sphere of radius 2 centered at the origin, and inside the circular cone with vertex at the origin and axis along the z-axis making an angle of 60° with the xy-plane. (See picture on the board.)
 - (a) Express $\iiint_S (x^2 + y^2 + z^2)^{3/2} dV$ in **both** spherical and cylindrical coordinates. Your integrals should be simplified and ready to evaluate.
 - (b) Evaluate one of the integrals by hand.
- 13. Suppose that R is a region in \mathbf{R}^2 and that $f: R \to \mathbf{R}$ is differentiable. The surface area of the graph of f is given by $S = \iint_R \sqrt{1 + ||\nabla f||^2} dA$. Let $f(x, y) = 4 x^2 y^2$. Find the surface area of the portion of the graph of f that is above the xy-plane. For full credit, evaluate the integral by hand.
- 14. Suppose that R is a bounded region in \mathbb{R}^2 with piecewise continuously differentiable boundary.
 - (a) Use Green's Theorem to explain why $\oint_C -y \, dx + x \, dy$ is two times the area of R, where C is the boundary of R oriented counterclockwise.
 - (b) Use the path integral formula in part a) to compute the area of the elliptical disk $\frac{x^2}{9} + \frac{y^2}{4} \leq 1$. Evaluate the integral by hand.
- 15. Find the value of $\int_C (2y + \sqrt{9 + x^3}) dx + (5x + e^{\sin y}) dy$, where C is the circle $x^2 + y^2 = 9$ traversed clockwise. Do all computations by hand.
- 16. Consider the two vector fields.

$$\mathbf{F} = (y^2 - x^2 + 3)\mathbf{i} + (xy + \cos 2y)\mathbf{j} \qquad \mathbf{G} = (y^2 - 3x^2 + 2)\mathbf{i} + (2xy + \cos 3y)\mathbf{j}$$

- (a) Show that one of the vector fields is conservative and the other is not.
- (b) Find a potential function for the conservative field.

Please put your pages in order before stapling and be sure the problem numbers are in the upper right corners.

Have a good break!