Math 225 Final Exam Name:

15 December 2004

200 Points

READ CAREFULLY: Do any **ten** problems. If you work on more than ten problems, you will get credit for the best ten. Note that some problems have multiple parts. If you use *Mathematica*, be very clear what you use it for, and show enough work that I can tell what you are thinking. Give exact answers when possible. Write integrals in ready-to-evaluate form before using *Mathematica*. If you have any question about what constitutes sufficient work, be sure to ask. Please do each problem on a separate page. Avoid writing anything in the upper left corner where the staple will go. (20 points each)

- 1. Consider the plane determined by the points A(5,0,0), B(6,0,2), and C(5,1,3).
 - (a) Find an equation of the plane.
 - (b) Let ℓ be the line passing through the points P(1, 1, 0) and Q(2, 0, -2). Find the point where ℓ intersects the plane. Suggestion: Parameterize the line.
- 2. Suppose $\mathbf{v} : \mathbf{R} \to \mathbf{R}^n$ is a differentiable vector function.
 - (a) Compute an expression for $\frac{d}{dt} \|\mathbf{v}(t)\|^2$ in terms of $\mathbf{v}(t)$ and $\mathbf{v}'(t)$. For full credit, your computation must be coordinate-free.
 - (b) Use your answer in part a) to prove that $\mathbf{v}(t)$ has constant length if and only if $\mathbf{v}(t)$ and $\mathbf{v}'(t)$ are always perpendicular.
- 3. Consider the parameterization of the parabola $x = y^2$ given by $x = t^2$ and y = t. Compute the curvature as a function of t. Make a reasonably accurate and appropriately sized sketch of the parabola for $-2 \le t \le 2$. For t = 0 add the vectors **T** and **N** and the osculating circle to the sketch. Be sure everything is to scale.

4. Use the formula
$$\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \kappa \left(\frac{ds}{dt}\right)^2 \mathbf{N}$$
 to prove $\kappa = \frac{\mathbf{a} \cdot \mathbf{v}_{\perp}}{\|\mathbf{v}\|^3}$ for a curve in \mathbf{R}^2 .

- 5. Define $F : \mathbf{R}^2 \to \mathbf{R}^2$ by $F(u, v) = (u^2 v^2, uv)$. Let P be the point (u, v) = (3, -1), and let $\mathbf{w} = \mathbf{i} + 3\mathbf{j}$. Compute $D_{\mathbf{w}}F(P)$ in **both** of the following ways:
 - (a) Using the definition of $D_{\mathbf{w}}F(P)$,
 - (b) By computing the matrix for the linear map DF(P) and using matrix multiplication.
- 6. Consider the surface xyz = 1. Show that the position vector of a point on the surface (the vector from the origin to the point) is never tangent to the surface. (Hints: What vector is normal to the surface? How can you tell if a vector is tangent to the surface?)

- 7. Let $f(x,y) = |x^2 y^2|$. Determine, with proof, if f is differentiable at (0,0).
- 8. Consider the function $f(x, y) = x + \frac{1}{2}y^2$.
 - (a) Make a reasonably accurate and appropriately sized sketch of the five level curves of f corresponding to the values -2, -1, 0, 1, 2. Label each curve with its value.
 - (b) A large family of bugs is out for a walk on the xy-plane. Each bug walks in the direction that f increases most quickly. Draw arrows at several points indicating the direction a bug would go at that point.
- 9. Prove that $x^2 y^2 = 1$ is a smooth one-dimensional manifold. Explain why $x^2 y^2 = 0$ is **not** a smooth one-dimensional manifold. Note: We don't have a theorem that implies when something is not a manifold.
- 10. Let $\mathbf{u}(\theta) = \cos \theta \, \mathbf{i} + \sin \theta \, \mathbf{j}$ and define $T : \mathbf{R}^2 \to \mathbf{R}^3$ by

$$T(\theta, \phi) = (3 + \cos \phi)\mathbf{u}(\theta) + \sin \phi \mathbf{k}$$

= $(3 + \cos \phi)(\cos \theta \mathbf{i} + \sin \theta \mathbf{j}) + \sin \phi \mathbf{k}$ (*)
= $((3 + \cos \phi)\cos \theta, (3 + \cos \phi)\sin \theta, \sin \phi).$

This is the parameterization of the torus \mathbf{T} that we have used before. The variables θ and ϕ can be used as coordinates on the torus, just as latitude and longitude are used as coordinates on the earth.

- (a) Find formulas for the coordinate vector fields \mathbf{e}_{θ} and \mathbf{e}_{ϕ} as linear combinations of \mathbf{i} , \mathbf{j} , and \mathbf{k} . Show that they are orthogonal.
- (b) If $f : \mathbf{T} \to \mathbf{R}$ is differentiable, find the formula for ∇f as a linear combination of \mathbf{e}_{θ} and \mathbf{e}_{ϕ} .

Suggestions: Use the formula marked (*) as a starting point for your computations. Keep the factor $(3 + \cos \phi)$ together, that is, don't distribute across it.

- 11. (112) Write $\int_0^2 \int_{x^2}^{2x} (x 3y^2) \, dy \, dx$ with the order of integration reversed. Evaluate one of the integrals by hand.
- 12. Define $g: \mathbf{R}^3 \to \mathbf{R}$ by $g(x, y, z) = \min\{x, y, z\}$. Evaluate $\int_0^1 \int_0^1 \int_0^1 g(x, y, z) \, dx \, dy \, dz$.

- 13. Suppose that R is a region in \mathbf{R}^2 and that $f : R \to \mathbf{R}$ is differentiable. The surface area of the graph of f is given by $S = \iint_R \sqrt{1 + ||\nabla f||^2} dA$. Let $f(x, y) = 4 x^2 y^2$. Find the surface area of the portion of the graph of f that is above the xy-plane. For full credit, evaluate the integral by hand.
- 14. The surface $\rho = \sin \phi$ (spherical coordinates) is pictured. Note that any plane that contains the z-axis slices this surface in two circles. The circles are tangent to each other and to the z-axis at the origin. Find the volume of the solid contained by this surface.
- 15. Let C be the arch of $y = \sin x$ from 0 to π . Find the length and centroid of C.
- 16. Suppose that R is a bounded region in \mathbb{R}^2 with piecewise continuously differentiable boundary. The rotational moment of R about the origin is defined to be $\iint_R r^2 dA$, where r is the distance to the origin (the r of polar coordinates).
 - (a) Use Green's Theorem to show that $\oint_C -x^2 y \, dx + xy^2 \, dy$ computes this polar moment, where C is the boundary of R oriented counter clockwise.
 - (b) Use the path integral formula in part a) to compute the polar moment of the elliptical disk $\frac{x^2}{9} + \frac{y^2}{4} \le 1$.
- 17. Find the value of $\int_C (2y + \sqrt{9 + x^3}) dx + (5x + e^{\sin y}) dy$, where C is the circle $x^2 + y^2 = 9$ traversed clockwise. Do all computations by hand.

Please put your pages in order before stapling and be sure the problem numbers are in the upper right corners.