| $Math \ 225$ | Exam 1 | Name: |
|--------------|--------|-------|
| Viatili 220  |        | rame. |

8 October 2009

Ivame.

100 Points

**Note:** You may use *Mathematica* to help you think in any problem, but you may not use it in any solution except as indicated.

"Show enough work to justify your answers."

**READ CAREFULLY!** This exam has **two** parts. In Part I you are are to do **all** four problems. In Part II you have a choice of problems.

Part I. Do all four problems in this part. Do your work on the exam paper. (10 points each)

- 1. Find an equation for the plane tangent to the graph of  $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 11$  at the point (-3, 2, 3).
- 2. Find a non-parametric equation for the plane that passes through the points A(2, 0, 1), B(0, 1, 3), and C(1, 1, 1).
- 3. Find the distance between the point P(5, 4, -3) and the plane 2x y 2z = 4.
- 4. Let  $f(x, y) = x^2/y$ .
  - (a) Compute the directional derivative of f at (3, 1) in the direction of  $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$ . (7 points)
  - (b) In which direction from (3,1) does f decrease most quickly? (Your answer should be a vector.) (3 points)

**READ CAREFULLY!** Do **any four** of the remaining problems. If you work on more than four, you will get credit for the best four. Please do each problem on a separate sheet of paper. Put the problem number in the **upper right corner** and avoid writing anything in the upper left corner where the staple will go. (15 points each)

- 5. The ellipse  $9x^2 + 4y^2 = 36$  is shown.
  - (a) Compute the curvature and radius of curvature at the point P = (0,3), assuming the ellipse is traversed counterclockwise. (10 points)
  - (b) Plot the center of the osculating circle that is tangent at P and draw the circle. Give the coordinates of the center of the circle. Draw directly on the picture below. *Be sure your drawing is to scale.* (5 points)



- 6. Consider the pictured parameterized curve  $\gamma(t) = (t^2 + t, -t^3 + 2t + 2)$  for  $0 \le t \le 2$ .
  - (a) Compute the vectors  $\mathbf{v}$ ,  $\mathbf{a}$ ,  $\mathbf{T}$ , and  $\mathbf{N}$  at t = 1. (8 points)
  - (b) Add these vectors to the picture with their tails at  $\gamma(1)$ . Draw directly on the picture above. Label your vectors and be sure they are to scale. (7 points)
- 7. Let  $\gamma(t) = (t^2 + t, -t^3 + 2t + 2)$  for  $0 \le t \le 2$  (the same curve as in the previous problem).
  - (a) Let L(t) be the best affine approximation to  $\gamma(t)$  at t = 1. Give the formula for L(t). (6 points)
  - (b) Write a simplified, ready-to-evaluate integral that gives the length of the curve. Use *Mathematica* to evaluate it. (You need to use NIntegrate. Syntax: **NIntegrate**[**f**[**t**], {**t**,**a**,**b**}] gives a numerical approximation to  $\int_{a}^{b} f(t) dt$ .) (9 points)
- 8. Suppose that the temperature in the (x, y)-plane is given by a function T such that  $\nabla T = xy\mathbf{i} \frac{x^2}{y}\mathbf{j}$ . Suppose that an insect is moving in the plane according to the parameterized curve  $\gamma(t) = (t^2, t^3)$ . Determine the rate at which the insect feels the temperature changing at t = 2.
- 9. Do any **one** of the following proofs. If you work on more than one, you will get credit for the best one.
  - (a) Prove the formula  $\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \kappa \left(\frac{ds}{dt}\right)^2 \mathbf{N}.$
  - (b) Suppose  $\mathbf{v}(t)$  is a differentiable function of  $t \in \mathbf{R}$ . Prove that  $\mathbf{v}(t)$  has constant length if and only if  $\mathbf{v}(t)$  and  $\mathbf{v}'(t)$  are perpendicular for all t.
- 10. Let  $f(x,y) = xy^2$ ,  $\mathbf{v} = 3\mathbf{i} \mathbf{j}$ , and P(4,1). Compute  $D_{\mathbf{v}}f(P)$  in two ways.
  - (a) Using the definition of  $D_{\mathbf{v}}f(P)$ . (9 points)
  - (b) Using the gradient of f. (6 points)
- 11. Suppose  $f : \mathbf{R}^3 \to \mathbf{R}$ .
  - (a) Define carefully what is meant by a level surface of f. (7 points)
  - (b) If  $f(x, y, z) = x^2 + y^2 z^2$ , find an equation of the level surface of f that passes through (0, 1, -2). (8 points)

Selected answers and hints.

- 1. -18(x+3) + 3(y-2) + 2(z-3) = 0
- 2. A normal vector is  $2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ .
- 3. 8/3
- 4. (a) -18/5(b) -2i + 3j
- 5. (b) Center (0, 5/3), radius 4/3
- 6.  $\mathbf{N} = \frac{1}{\sqrt{10}}\mathbf{i} + \frac{3}{\sqrt{10}}\mathbf{j}$ . Note that **N** points to the outside of the curve.
- 7. (a)  $L(t) = (2,3) + (t-1)(3\mathbf{i} \mathbf{j}) = (2 + 3(t-1), 3 (t-1))$ (b) 8.99501
- 8. 104. This is a chain rule problem. You should not try to determine a formula for T.
- 9. The other proof you should know is the proof of the curvature formula  $\kappa = \frac{\mathbf{a} \cdot \mathbf{v}_{\perp}}{||\mathbf{v}||^3}$  starting from the formula for acceleration in part (a).
- 10. -5
- 11.  $x^2 + y^2 z^2 = -3$