Math 225 Exam 1 Name:

4 October 2007 100 Points

No *Mathematica*. You may use a calculator to do arithmetic, but exact answers are expected.
"Show enough work to justify your answers." *"Show enough work to justify your answers."*

1. Match each graph with its equation. Put the letter of the graph in the blank next to the appropriate equation. Remember that you can determine some features of a surface by setting a variable in its equation to a constant. (10 points)

READ CAREFULLY! Do **any six** of the remaining problems. If you work on more than six, you will get credit for the best six. Please do each problem on a separate sheet of paper. Put the problem number in the **upper right corner** and avoid writing anything in the upper left corner where the staple will go. (15 points each)

- 2. The ellipse $9x^2 + 25y^2 = 225$ is shown.
	- (a) Compute the curvature at the point $P = (5,0)$, assuming the ellipse is traversed counterclockwise.
	- (b) Draw the vectors **T** and **N** at ^P. Be sure to draw them to scale. Draw directly on the picture above.
	- (c) Plot the center of the osculating circle that is tangent at P and draw the circle. You do not need to give the coordinates of the center of the circle, but indicate how far it is from the curve.
- 3. Do any **one** of the following proofs. If you work on more than one, you will get credit for the best one.
	- (a) Prove the formula $\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \kappa \left(\frac{ds}{dt}\right)^2 \mathbf{N}.$
	- (b) Starting with the formula in the previous part, state and prove the formula for curvature.
	- (c) Suppose **v**(t) is a differentiable function of $t \in \mathbf{R}$. Prove that **v**(t) has constant length if and only if $\mathbf{v}(t)$ and $\mathbf{v}'(t)$ are perpendicular for all t.
- 4. Explain why the following equations represent parallel (non-intersecting) planes, and find the distance between the the planes.

$$
3x + y - 2z = 1 \qquad \qquad 3x + y - 2z = 10
$$

- 5. Let S be the sphere $x^2 + (y-2)^2 + (z+3)^2 = 4$. For (x, y, z) in **R**³, let $f(x, y, z)$ be the distance from (x, y, z) to S, and let $F(x, y, z)$ be the point on S closest to (x, y, z) . Give formulas in coordinates for f and F .
- 6. Define $F: \mathbb{R}^3 \to \mathbb{R}^2$ by $F(x, y, z) = (xy, y/z)$. Let $P = (2, 1, 3)$ and $\mathbf{v} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$. Compute $D_{\mathbf{v}}F(P)$ using any method you wish.
- 7. Consider the graph of $xy = 1$ in the third quadrant. Parameterize this curve by the slope of the position vector, that is, find formulas for x and γ in terms of t so that (x, y) is on the curve and t is the slope of the vector $x\mathbf{i} + y\mathbf{j}$.
- 8. Let $f(x, y) = \sqrt{2} e^{2x} \cos y$. Let P be the point $(0, \pi/4)$.
	- (a) Compute $\nabla f(P)$.
	- (b) Use the best linear approximation of f near P to approximate the value of $f(-.2, \pi/4 + .3).$
- 9. The map $(x, y) = F(r, \theta) = (r \cos \theta, r \sin \theta)$ defines polar coordinates in the (x, y) -plane. Let $P = F(2, \pi/3)$.
	- (a) Compute P and the coordinate vectors $\frac{\partial F}{\partial r}$ and $\frac{\partial F}{\partial \theta}$ at P.
	- (b) Plot the point P in the (x, y) -plane. Draw the coordinate vectors at P and label them. Draw accurately, to scale, and not too small.
- 10. Find an equation of the plane tangent to the surface $2xz + yz + 10 = x^2y$ at the point $(1, -5, 5)$.
	- Put problem numbers in the **upper right corner** of each page.
	- Put your pages in order.

Selected answers and hints.

2. (a) $\kappa = 5/9$

- 4. The distance is $9/\sqrt{14}$. There are two ways to find this: use scalar projection or parameterize some line perpendicular to the planes.
- 6. $-3\mathbf{i} \mathbf{j}$. There are two ways to do this: use the definition of $D_{\mathbf{v}}F(P)$ or compute the matrix for $DF(P)$.
- 7. $(x, y) = (-1/\sqrt{t}, -\sqrt{t})$
- 8. .3
- 9. $P = (1, \sqrt{3}), \frac{\partial F}{\partial r}(P) = \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}, \frac{\partial F}{\partial \theta}(P) = -\sqrt{3}\mathbf{i} + \mathbf{j}$. Noting that the polar coordinates of P are $(2\pi/3)$ and that $||\frac{\partial F}{\partial P}(P)|| = 1$ and $||\frac{\partial F}{\partial P}(P)|| = 2$ helps to plot these of P are $(2, \pi/3)$ and that $\left|\frac{\partial F}{\partial r}(P)\right| = 1$ and $\left|\frac{\partial F}{\partial r}(P)\right| = 2$ helps to plot these.
- 10. A very common error is to forget the " $= 0$ " that makes it an equation.