
When is a Vector Field the Gradient of a Function?
Insert for Colley’s text, Sections 3.3 and 3.4.

This handout is related to “Gradient Fields and Potentials” in Section 3.3 and “Two
Vector-analytic Results” in Section 3.4.

Suppose D ⊂ En and f : D → R is differentiable. Then F = ∇f is a vector field on D.
We want to address the reverse question: if F is a vector field on D, is it the gradient of
some function? More specifically, given F : D → V n (a vector field on D),

1. Does there exist a differentiable function f : D → R such that F = ∇f?

2. If such a function exists, how can you find one?

This is partially answered by the following theorem, stated here in R
2.

Theorem 1. Suppose D ⊂ R
2 and F = P i+Qj is a vector field on D with C1 coefficients. If

F is the gradient of a function, then Py = Qx, where the subscripts denote partial derivatives.

(Note: A function is C1 if it is differentiable and its partial derivatives are continuous.)

Proof: Suppose F = ∇f = fxi + fyj. Then P = fx and Q = fy. It follows that f satisfies
the hypothesis for the theorem on equality of mixed partial derivatives. We then have

Py = (fx)y = fxy = fyx = (fy)x = Qx.

This theorem makes it easy to tell when a vector field is not a gradient: if Py �= Qx, then
F is not a gradient. For example, consider F = y2i + xj. We have P = y2 and Q = x. Since
Py = 2y and Qx = 1, and so Py �= Qx, it follows that F is not the gradient of any function.

Here is the theorem in R
3.

Theorem 2. Suppose D ⊂ R
3 and F = P i + Qj + Rk is a vector field on D with C1

coefficients. If F is the gradient of a function, then

Py = Qx, Pz = Rx, and Qz = Ry.

Note that the coefficients of the curl of a vector field consist precisely of the differences
of these partial derivatives. Thus, a convenient way to state both theorems is the following.
(This is Theorem 4.3 in Section 2.4, except there it is stated only in R

3.)

Theorem 3. Suppose D ⊂ R
n with n = 2 or n = 3 and F is a C1 vector field on D. If F is

the gradient of a function, then curlF = 0.

So far we have a condition that says when a vector field is not a gradient. The converse
of Theorem 1 is the following: Given vector field F = P i + Qj on D with C1 coefficients,
if Py = Qx, then F is the gradient of some function. Unfortunately, this is not quite true.
The additional hypothesis is a geometric condition on D. The most general condition (called
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simple connectivity) is technical, and we will see it in Chapter 6, but here is a version that
is adequate for our current purposes.

Theorem 4. Suppose D ⊂ R
2 is a disk or the interior of a rectangle, and that F = P i+Qj is

a vector field on D with C1 coefficients. If Py = Qx, then F is the gradient of some function.

The proof of this (along with the more general condition on D) is technical, and is given in
Chapter 6.

For our purposes, the condition Py = Qx can be interpreted as F is “probably” a gradient.
For example, consider F = yi+xj. We have P = y and Q = x. Since Py = 1 = Qx, we expect
F to be the gradient of some function. Indeed, if f(x, y) = xy, then ∇f = F. In simple
cases, such as this one, the needed function can be found by “guess and check.” In more
complicated examples, there is a procedure, which is outlined in “Finding Scalar Potentials”
in Section 6.3.

Here is a strengthened converse for Theorem 2.

Theorem 5. Suppose D ⊂ R
3 is a solid ball or the interior of a box, and that F =

P i + Qj + Rk is a vector field on D with C1 coefficients. If

Py = Qx, Pz = Rx, and Qz = Ry,

then F is the gradient of some function.

Assignment:

• Read “Finding Scalar Potentials” in Section 6.3.

• Problems, Section 6.3, #3–18. Note: When referring to a vector field, “conservative,”
“has a potential,” and “is a gradient” mean the same thing.
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