
STEEPEST DESCENT AND ASCENT

Math 225

The method of steepest descent is a numerical method for approximating local minima
(and maxima) of differentiable functions from R

n to R. The basic idea of the method is
very simple: If the gradient is not zero where you are, then move in the direction opposite
the gradient.

I find it easier to think in the opposite direction, namely, to seek out a local maximum
by moving in the direction of the gradient. This could be called steepest ascent.

Suppose f : R
n → R is differentiable. We want to approximate a point a where f takes

a local maximum. Let x0 be an initial approximation (educated guess) of the maximum.
The next approximation, x1, is obtained by adding a positive multiple of ∇fx0 to x0. This
process is repeated, yielding a sequence x1,x2,x3, . . . in which

xn+1 = xn + k∇fxn.

If x0 was chosen close enough to a, and if suitable conditions hold, then this sequence will
converge to a, that is, lim

n→∞xn = a. (If you want to go towards a minimum, take k to be

negative.)
A cleaner way to describe to describe this process is to define a mapping T : R

n → R
n

by

(∗) T (x) = x + k∇fx.

As a result we have that xn+1 = T (xn) for all n = 0, 1, 2, . . . , and so the sequence is
obtained by repeated application of T to x0, e.g., x4 = T (T (T (T (x0)))). The mapping T
can clearly be used to generate a sequence starting with any point in R

n—given a point
in R

n, the mapping T says where the next point is. One can think of T as describing the
discrete motion of a particle as it jumps from one point of R

n to another. As such, it is
an example of a discrete dynamical system.

Note that if x = a, the local maximum, then ∇fa = 000 since a is a critical point. Thus

T (a) = a + k∇fa = a.

Since T (a) = a, that is, T doesn’t move a, we call a a fixed point of T . Thus the problem
of finding a minimum for f becomes one of finding a fixed point for T . Many important
numerical methods are based on this idea of converting the problem at hand into a fixed
point problem. Another method of this type that you may have seen is Newton’s method.
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The rate of convergence of xn → a depends on the choice of k. If k is too small, the
convergence is slow. On the other hand, if k is too large, the mapping can “jump” over
the fixed point. Unfortunately, there isn’t a single value of k that works best.

Whether or not a particular value of k works for a given function depends on the
concavity of the function f—the greater the concavity the smaller k has to be. In fact,
the value of k should really not be a constant at all! The value of k in T (x) = x + k∇fx

should depend on the concavity of f at x, that is, the formula for T should really be

T (x) = x + α(x)∇fx,

where α : R
n → R is some suitable positive function.

Here’s the idea. Suppose we are at x. We want to move in the direction of ∇fx, but
how far? Thinking of x as constant for the moment, consider the line through x in the
direction of ∇fx, namely γ(t) = x + t∇fx. The Math 111 function obtained by restricting
f to this line is

g(t) = f(γ(t)) = f(x + t∇fx).

It seems that the appropriate place to move to in this direction is the point where g takes
its maximum. It won’t necessarily be the maximum for f , but it will be the best we can
do in this direction.

For what value of t does g take its maximum? That’s another approximation problem,
but we are down to one variable, and so we can use Math 111/112 techniques. We will
approximate g with its quadratic Taylor polynomial near t = 0:

g(t) ≈ Q(t) = g(0) + g′(0)t +
1
2
g′′(0)t2.

The idea is that g will take its maximum at a value of t close to where Q takes its maximum.
The graph of Q is a parabola, provided g′′(0) �= 0. For Q to have a maximum, its graph
must be concave down. This is a reasonable expectation. If we are headed for a maximum
of f , the graph of f is probably concave down, which would imply that the graphs of g
and Q are concave down as well. Another thing to note is that g′(0) is positive, since with
increasing t we are moving in the direction of ∇f at t = 0.

You can easily verify that the value of t where Q takes its maximum under these as-
sumptions is t∗ = −g′(0)/g′′(0), and so we set

α(x) = t∗ = − g′(0)
g′′(0)

.

Since g′(0) > 0 and g′′(0) < 0, we have that t∗ > 0, as expected.
We need formulas for g′(0) and g′′(0) in terms of f . They are directional derivatives of

f at x in the direction of ∇fx. To simplify the notation, let v = ∇fx. Then

g′(0) =
d

dt

∣
∣
∣
∣
0

f(x + tv) = Dvf(x) = ∇fx · v = ∇fx · ∇fx = ‖∇fx‖2
,
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and

g′′(0) =
d2

dt2

∣
∣
∣∣
0

f(x + tv) = D2
vf(x) = v · (Hfxv

)
= ∇fx · (Hfx∇fx

)
,

where Hfx denotes the Hessian matrix of f at x. Thus we have

α(x) = t∗ = − ‖∇fx‖2

∇fx · (Hfx∇fx

) .

Plugging this expression into the formula for T we get

(∗∗) T (x) = x− ‖∇fx‖2

∇fx · (Hfx∇fx

)∇fx.

Using (∗∗), as opposed to (∗), will result in much faster convergence to the maximum,
but at a price. Like Newton’s Method, this formula can be very sensitive to initial con-
ditions. A poor choice x0 can result in movement away from the maximum. In fact, if
you’re near a minimum, you’ll go there!

To see this, suppose x is in a region where f is concave up. Then the functions g and Q
will also be concave up. The critical point of Q will be a minimum, and α(x) = t∗ will be
negative instead of positive. Thus, in (∗∗) we will be going in the direction opposite the
gradient, that is, towards a minimum.

Thus (∗∗) is both steepest ascent and descent depending on the initial approximation.
In general, the map T can be chaotic. To use it to find a maximum, you should be sure
you are in a region where f is concave down. Similarly, to find a minimum, you should
be in a region where f is concave up. Otherwise, you should use the version with the
constant coefficient. Note that with two or more variables, the graph of f can have mixed
concavity! The conditions in the Second Derivative Test can be used to determine this.

Here are some functions to try . . .

(1) f(x, y) = −x2 − 4y2

(2) f(x, y) = −x2 − y4

(3) f(x, y) = x2 − y2

(4) f(x, y) = x2 + xy + y2

(5) f(x, y) = x3 + 3xy − y3

Now for the challenge . . . find the approximate values of the local minima of

f(x, y) = 1 + x − y − 2x3 + x6 + 6xy2 + 3x4y2 + 3x2y4 + y6

and their approximate locations. You should start by looking at the graph and level curves
of f .
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