STEEPEST DESCENT AND ASCENT
MATH 225

The method of steepest descent is a numerical method for approximating local minima
(and maxima) of differentiable functions from R"™ to R. The basic idea of the method is
very simple: If the gradient is not zero where you are, then move in the direction opposite
the gradient.

I find it easier to think in the opposite direction, namely, to seek out a local maximum
by moving in the direction of the gradient. This could be called steepest ascent.

Suppose f: R™ — R is differentiable. We want to approximate a point a where f takes
a local maximum. Let xo be an initial approximation (educated guess) of the maximum.
The next approximation, x;, is obtained by adding a positive multiple of Vfx, to x¢. This
process is repeated, yielding a sequence X1, X2,X3,... in which

Xn+1 = Xn +kVfx, .

If x¢ was chosen close enough to a, and if suitable conditions hold, then this sequence will
converge to a, that is, lim x, = a. (If you want to go towards a minimum, take k to be
n—oo

negative.)
A cleaner way to describe to describe this process is to define a mapping 7: R™ — R"
by

(%) T(x) = x+ kV/x.

As a result we have that x,11 = T'(x,) for all n = 0,1,2,..., and so the sequence is
obtained by repeated application of T' to xq, e.g., x4 = T(T(T(T(x0)))). The mapping T
can clearly be used to generate a sequence starting with any point in R”—given a point
in R™, the mapping T" says where the next point is. One can think of T" as describing the
discrete motion of a particle as it jumps from one point of R"” to another. As such, it is
an example of a discrete dynamical system.

Note that if x = a, the local maximum, then Vf, = 0 since a is a critical point. Thus

T(a) =a+ kVfa=a.

Since T'(a) = a, that is, 7" doesn’t move a, we call a a fixed point of T'. Thus the problem
of finding a minimum for f becomes one of finding a fixed point for 7. Many important
numerical methods are based on this idea of converting the problem at hand into a fixed
point problem. Another method of this type that you may have seen is Newton’s method.



The rate of convergence of x,, — a depends on the choice of k. If k is too small, the
convergence is slow. On the other hand, if k is too large, the mapping can “jump” over
the fixed point. Unfortunately, there isn’t a single value of k that works best.

Whether or not a particular value of k works for a given function depends on the
concavity of the function f—the greater the concavity the smaller £ has to be. In fact,
the value of k should really not be a constant at alll The value of k in T'(x) = x + kVfx
should depend on the concavity of f at x, that is, the formula for T" should really be

T(X) =X+ a(x)fo,

where a: R™ — R is some suitable positive function.

Here’s the idea. Suppose we are at x. We want to move in the direction of Vfy, but
how far? Thinking of x as constant for the moment, consider the line through x in the
direction of Vfx, namely v(t) = x + tVfx. The Math 111 function obtained by restricting
f to this line is

9(t) = f(v(1)) = F(x +tVfx).

It seems that the appropriate place to move to in this direction is the point where g takes
its maximum. It won’t necessarily be the maximum for f, but it will be the best we can
do in this direction.

For what value of ¢t does g take its maximum? That’s another approximation problem,
but we are down to one variable, and so we can use Math 111/112 techniques. We will
approximate g with its quadratic Taylor polynomial near ¢ = 0:

9(1) ~ Q1) = 9(0) + g (Ot + 9" (0)¢*

The idea is that g will take its maximum at a value of ¢ close to where () takes its maximum.
The graph of @ is a parabola, provided ¢”(0) # 0. For @ to have a maximum, its graph
must be concave down. This is a reasonable expectation. If we are headed for a maximum
of f, the graph of f is probably concave down, which would imply that the graphs of g
and @ are concave down as well. Another thing to note is that ¢’(0) is positive, since with
increasing t we are moving in the direction of Vf at t = 0.

You can easily verify that the value of ¢ where ) takes its maximum under these as-
sumptions is t. = —g’(0)/¢"(0), and so we set

Since ¢’(0) > 0 and ¢”(0) < 0, we have that t, > 0, as expected.
We need formulas for ¢’(0) and ¢”(0) in terms of f. They are directional derivatives of
f at x in the direction of Vfx. To simplify the notation, let v. = Vfx. Then

d
g'(0) = - flx+1v) = Dyf(x) = Vs v =Vx Vix = |V,
0



and
d2
dt? 0

g"(0) fx+tv) = DAf(x) = v (Hfxv) = V- (HfVE),

where H fx denotes the Hessian matrix of f at x. Thus we have
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Plugging this expression into the formula for 7" we get
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Using (%), as opposed to (x), will result in much faster convergence to the maximum,
but at a price. Like Newton’s Method, this formula can be very sensitive to initial con-
ditions. A poor choice x¢ can result in movement away from the maximum. In fact, if
you’re near a minimum, you’ll go there!

To see this, suppose x is in a region where f is concave up. Then the functions g and @
will also be concave up. The critical point of @ will be a minimum, and a(x) = t, will be
negative instead of positive. Thus, in (xx) we will be going in the direction opposite the
gradient, that is, towards a minimum.

Thus (x%) is both steepest ascent and descent depending on the initial approximation.
In general, the map T can be chaotic. To use it to find a maximum, you should be sure
you are in a region where f is concave down. Similarly, to find a minimum, you should
be in a region where f is concave up. Otherwise, you should use the version with the
constant coefficient. Note that with two or more variables, the graph of f can have mixed
concavity! The conditions in the Second Derivative Test can be used to determine this.

Here are some functions to try ...
(1) f(z,y) = —a® — 4y

(2) f(xay) = 33'2 - y4
(3) f(xay) = 33'2 - y2
4) f(z,y) =2° + 2y +y°
(5) flz,y) =2° + 32y —y°
Now for the challenge ... find the approximate values of the local minima of

flz,y) =1+2z—y—22% + 2% + 62y* + 32*y? + 322y* +¢/°

and their approximate locations. You should start by looking at the graph and level curves

of f.
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