
SUMMARY OF PATH INTEGRALS AND RELATED THEOREMS

Math 225 Chapter 6 of Colley’s Text

Chapter 6 of Colley’s text introduces path integrals and explores their consequences.
This pulls together a lot of things we have done so far, and introduces several new ideas as
well. It can be a bit overwhelming, and so here is a summary. Several coordinate formulas
are stated in R

2, but generalize to R
3 in an obvious way. A few things only work in R

2.
They either have no generalization to R

3, or the generalization to R
3 is not obvious.

Path Integrals with Respect to Arc-Length (§6.1)
If C is a path in En and f is a function on C , we can define

∫
C

f ds.

Examples and Applications.

(1) L =
∫
C

ds is the length of C . (§3.2)
(2) If δ is mass density (mass per unit length) along C , then M =

∫
C δ ds is the mass

of C .
(3) In R

2 the centroid of C is the point (x̄, ȳ) where x̄ = 1
L

∫
C

xds and ȳ = 1
L

∫
C

y ds.
These are the average values of x and y on C . The integrals in these expressions
are the moments of C .

(4) In R
2 the center of mass of C is the point (xcm, ycm) where xcm = 1

M

∫
C

xδ ds and
ycm = 1

M

∫
C

yδ ds. These are weighted average values of x and y on C , weighted
by δ. The integrals in these expressions are the moments of the mass distribution.

Path Integrals of a Vector Field (§6.1)
If C is a path in En and F is a vector field along C , we can define

∫
C

F · dX. Here
X represents a point in En. Then dX represents an infinitesimal displacement along C ,
and so is a vector. Since ds is the length of dX, we have dX/ds = T, where T is the unit
tangent vector pointing in the direction of motion along C (from §3.2). We get∫

C

F · dX =
∫

C

F · T ds.

In R
2 we have F = P i+Qj, where P and Q are the coordinate functions of F, X = (x, y),

and dX = dx i + dy j, and so ∫
C

F · dX =
∫

C

P dx + Qdy.
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In R
2, let n = −T⊥, so that n is a unit vector pointing to the right as you move along

the curve (this is the opposite of N used in Section 3.2). Then we can define
∫

C F · n ds.
(This does not generalize directly to R

3 because there is no perp operator in R
3.)

Applications.

(1) If F is a force acting on a particle that moves along C , then
∫

C F ·dX =
∫
C F ·T ds

is the work done by F.
(2) If F is the velocity of a fluid flow, then

∫
C

F · T ds is a measure of how the flow
agrees with the direction of the curve. In particular, if C is the boundary of some
region R, then

∮
C F ·T ds is a measure of the instantaneous circulation of the flow

around the boundary of the region. Green’s Theorem (§6.2) can then be used to
give an interpretation of curlF.

(3) In R
2, if F is the velocity of a fluid flow, then

∫
C

F · n ds is a measure of how the
flow crosses the curve in the direction of n. This is called the flux of F across the
curve (§6.2). In particular, if C is the boundary of some region R oriented so that
n is the outward-pointing unit normal, then

∮
C

F ·n ds is a measure of the rate at
which the fluid is escaping the region. Green’s Theorem (§6.2) can then be used
to give an interpretation of divF. In R

3 there is a notion of flux across a surface,
but not across a curve (§7.2).

Dependence on Orientation (§6.1)
The integral

∫
C f ds does not depend on orientation; the integral

∫
C F · dX does. More

specifically, if C̃ represents C with the opposite orientation, then

∫
C̃

f ds =
∫

C

f ds and
∫

C̃

F · dX = −
∫

C

F · dX.

This is part of Theorem 1.5.

Evaluation of Path Integrals (§6.1)
Suppose C is the image of γ : [a, b] → En, assumed to be piecewise C1. One can formally

take X = γ(t) and dX = γ′(t)dt to get

∫
C

F · dX =
∫

C

F(X) · dX =
∫ b

a

F
(
γ(t)

) · γ′(t)dt.

In coordinates we have x = x(t), y = y(t), dx = x′(t)dt, and dy = y′(t)dt, and so

∫
C

P dx+Qdy =
∫

C

P (x, y)dx+Q(x, y) dy =
∫ b

a

(
P

(
x(t), y(t)

)
x′(t)+Q

(
x(t), y(t)

)
y′(t)

)
dt.
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Note that in some cases the parameter can be taken to be x or y. For example, if the curve
is given by y = y(x) for a ≤ x ≤ b, then dy = y′(x)dx and

∫
C

P dx + Qdy =
∫

C

P (x, y)dx + Q(x, y)dy =
∫ b

a

(
P

(
x, y(x)

)
+ Q

(
x, y(x)

)
y′(x)

)
dx.

To evaluate a flux integral (§6.2) in R
2 (but not in R

3), use the fact that F · n =
F⊥ · n⊥ = F⊥ · T:

∫
C

F · n ds =
∫

C

F⊥ ·T ds =
∫

C

F⊥ · dX =
∫

C

−Qdx + P dy =
∫ b

a

F
(
γ(t)

)
⊥ · γ′(t)dt.

For path integrals with respect to arc length we have ds = ds
dt dt = ‖γ′(t)‖ dt or ds =

‖dX‖ = ‖γ′(t)dt‖ = ‖γ′(t)‖ dt, and so

∫
C

f ds =
∫

C

f(X)ds =
∫ b

a

f
(
γ(t)

) ‖γ′(t)‖ dt.

In coordinates we have ds =
√

dx2 + dy2 =
√

x′(t)2 + y′(t)2 dt, and so

∫
C

f ds =
∫

C

f(x, y)ds =
∫ b

a

f
(
x(t), y(t)

)√
x′(t)2 + y′(t)2 dt.

If the curve is given by y = y(x) for a ≤ x ≤ b, then

∫
C

f ds =
∫

C

f(x, y)ds =
∫ b

a

f
(
x, y(x)

)√
1 + y′(x)2 dx.

When f = 1, the length of the curve is then
∫ b

a

√
1 + y′(x)2 dx, a formula you may remem-

ber from Math 112.

Path integrals and Green’s Theorem (§6.2)
Green’s Theorem and Variations. Let R be a bounded region in R

2 with piecewise

C1 boundary ∂R, oriented in the positive direction. Suppose that F = P i + Qj is a C1

vector field on R. Then

∮
∂R

P dx + Qdy =
∮

∂R

F · dX =
∮

∂R

F ·T ds =
∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
R

curlF dA

and ∮
∂R

F · n ds =
∫∫

R

divF dA.

The last variation is known as the Divergence Theorem.
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Green’s Theorem is an important generalzation of the Fundamental Theorem of Cal-
culus, f(b) − f(a) =

∫ b

a f ′(x)dx. Both say that an oriented sum of a quantity on the
boundary is equal to the sum of some derivative of the quantity on the interior.

Recall the interpretations of
∮

∂R
F · T ds and

∮
∂R

F · n ds in the second section above.
Green’s Theorem then gives interpretations to curlF and divF as measures of rotation
and expansion.

Green’s Theorem and its variations generalize to R
3 in two ways, known as the theorems

of Gauss and Stokes (§7.3). They generalize further to fairly general multi-dimensional
surfaces and solids, and are known collectively simply as Stokes’ Theorem (§8.3). It is an
important theorem of modern mathematics.

Generalized Stokes’ Theorem (or the FTC on steroids). Let M be an oriented

n-dimensional manifold with boundary ∂M . Let α be a differential form of degree n − 1
on M . Then ∫

∂M

α =
∫

M

dα.

This is the Fundamental Theorem of Calculus (Math 111 version and for path integrals,
Theorem 1 below), Green’s Theorem, the Divergence Theorem, the theorems of Gauss and
Stokes, and more, all rolled into one!

Path Integral Version of the Fundamental Theorem of Calculus (§6.3)
Theorem 1. Suppose that U is an open set in En, that f : U → R is C1, and that C is

a piecewise C1 oriented path in U from A to B. Then

∫
C

∇f · dX = f(X)
∣∣∣B
A

= f(B) − f(A).

This is part of Theorem 3.3 in Colley.

Path Integrals and Conservative Vector Fields (§6.3)
Looking through my collection of mathematics and physics books, I find that mathe-

maticians and physicists give different definitions for a conservative vector field!

Mathematician’s Definition. Suppose that U is an open set in En and that F is a
continuous vector field on U . We say that F is conservative if F is the gradient of some
function on U , that is, if there is a function f : U → R such that F = ∇f .

Note: If F = ∇f , then f is called a potential for F (physicists call −f a potential).

Physicist’s Definition. Suppose that U is an open set in En and that F is a continuous
vector field on U . They say that F is conservative if for every piecewise C1 path C in U ,
the integral

∫
C

F · dX depends only on the endpoints of C . Another way to say this is
that for every pair of piecewise C1 paths C and C̃ in U joining the same two points we
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have
∫

C
F · dX =

∫
C̃

F · dX. (Note: Sometimes this condition on
∫
C

F · dX is described
by saying that the integral is independent of path. This is really a misstatement. The
integral does depend on the path somewhat; it depends on its endpoints.)

These two definitions are really just different points of view because of the following the-
orem.

Theorem 2. Suppose that U is an open set in En and that F is a continuous vector field

on U . Then the following statements about F are equivalent.

(1) F is the gradient of some function. (Math definition of conservative)

(2) For every piecewise C1 path C in U , the integral
∫
C

F · dX depends only on the

endpoints of C . (Physics definition of conservative)

(3) For every piecewise C1 loop C in U , we have
∫
C F · dX = 0.

Note that (1) ⇐⇒ (2) is part of Theorem 3.3 in Colley and (2) ⇐⇒ (3) is Theorem 3.2.
The next theorem says that it is almost the case that a vector field F is conservative if
and only if curlF = 0.

Theorem (Test for Conservative Vector Fields). Suppose that U is an open set in

E2 or E3 and that F is a C1 vector field on U .

(1) If F is conservative, then curlF = 0.

(2) Suppose U is simply connected. Then F is conservative if and only if curlF = 0.

Remarks. In R
2 we have F = P i + Qj, where P and Q are the coordinate functions of F.

Then curlF = ∂Q
∂x − ∂P

∂y .

• Part (1) of the theorem is just a restatement of something we saw earlier, namely,
if F is a gradient, then ∂Q

∂x = ∂P
∂y . (This generalizes in R

3 to three equations, since
curlF is a vector.)

• The expression ∂Q
∂x − ∂P

∂y appears in the double integral in Green’s Theorem (§6.2).
(In R

3 the coefficients of curlF appear in a coordinate version of Stokes’ Theorem
(§7.3)), a formula that is truly scary and does not often appear in undergraduate
texts!)

If the set U is not simply connected (in R
2 this happens if it has one or more holes) and

curlF = 0, the vector field F might be a gradient, but it need not be. For a discussion on
this, see the handout “A Curl-Free Vector Field that is not a Gradient.”

Note to physics majors. When I took physics, I remember when determining that curlF =
0 for a vector field, the next step was almost always to assume that F has a potential—it was
hard to imagine it not having a potential. Learning that F does not have to have a potential
was disconcerting. Hopefully this will cause you to ponder why the important physical
vector fields that are curl-free (gravitational, electric) have potentials, what physics would
be like if they didn’t, what physical properties cause this, and how we know.

Robert Foote, December 2007. Last revision December 2014.
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