SUMMARY OF PATH INTEGRALS AND RELATED THEOREMS
MATH 225 CHAPTER 6 OF COLLEY’S TEXT

Chapter 6 of Colley’s text introduces path integrals and explores their consequences.
This pulls together a lot of things we have done so far, and introduces several new ideas as
well. It can be a bit overwhelming, and so here is a summary. Several coordinate formulas
are stated in R?, but generalize to R? in an obvious way. A few things only work in R2.
They either have no generalization to R3, or the generalization to R? is not obvious.

PATH INTEGRALS WITH RESPECT TO ARC-LENGTH (§6.1)
If C'is a path in E™ and f is a function on C', we can define fc f ds.

EXAMPLES AND APPLICATIONS.

(1) L= [ ds is the length of C. (§3.2)

(2) If § is mass density (mass per unit length) along C, then M = fc 0 ds is the mass
of C.

(3) In R? the centroid of C' is the point (z,3) where & = 1 [, zds and § = T [,y ds.
These are the average values of x and y on C. The integrals in these expressions
are the moments of C'.

(4) In R? the center of mass of C is the point (Zem, Yem) Where Ty = ﬁ fc x6 ds and
Yem = ﬁ i) Yo ds. These are weighted average values of x and y on C, weighted
by 4. The integrals in these expressions are the moments of the mass distribution.

PATH INTEGRALS OF A VECTOR FIELD (§6.1)

If C is a path in E™ and F is a vector field along C, we can define fCF -dX. Here
X represents a point in E”. Then dX represents an infinitesimal displacement along C|,
and so is a vector. Since ds is the length of dX, we have dX/ds = T, where T is the unit
tangent vector pointing in the direction of motion along C' (from §3.2). We get

/F~dX:/F~Tds.
c c

In R? we have F = Pi+ Qj, where P and Q are the coordinate functions of F, X = (z,y),
and dX = dzxi+ dyj, and so

/F-dX:/de+Qdy.
C C

1



In R?, let n = — T, so that n is a unit vector pointing to the right as you move along
the curve (this is the opposite of N used in Section 3.2). Then we can define fC F - nds.
(This does not generalize directly to R because there is no perp operator in R3.)

APPLICATIONS.

(1)
(2)

If F is a force acting on a particle that moves along C, then fc F-dX = fC F-Tds
is the work done by F.

If F is the velocity of a fluid flow, then fC F - Tds is a measure of how the flow
agrees with the direction of the curve. In particular, if C' is the boundary of some
region R, then fc F - T ds is a measure of the instantaneous circulation of the flow
around the boundary of the region. Green’s Theorem (§6.2) can then be used to
give an interpretation of curl F.

In R?, if F is the velocity of a fluid flow, then [, F -nds is a measure of how the
flow crosses the curve in the direction of n. This is called the fluz of F across the
curve (§6.2). In particular, if C' is the boundary of some region R oriented so that
n is the outward-pointing unit normal, then fc F -nds is a measure of the rate at
which the fluid is escaping the region. Green’s Theorem (§6.2) can then be used
to give an interpretation of divF. In R? there is a notion of flux across a surface,
but not across a curve (§7.2).

DEPENDENCE ON ORIENTATION (§6.1)

The integral | ¢ | ds does not depend on orientation; the integral S o F-dX does. More

specifically, if C represents C' with the opposite orientation, then

éf@sz@ and éFdX:—LFdX

This is part of Theorem 1.5.

EVALUATION OF PATH INTEGRALS (§6.1)

Suppose C is the image of v: [a,b] — E™, assumed to be piecewise C1. One can formally

take X = (t) and dX = ~/(t) dt to get

LF%X:LN@%M:L%@@)ﬂWM

In coordinates we have z = z(t), y = y(t), de = 2/(t) dt, and dy = y'(t) dt, and so

J.

b

Pdr+Qdy = /C P(x,y) dz+Q(x,y) dy = / (P(a(), 51« (O+Q (1), y(®)) ' (1)) dt.

a
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Note that in some cases the parameter can be taken to be x or y. For example, if the curve
is given by y = y(z) for a < x <b, then dy = y'(z) dz and

b

/Cde +Qdy = /CP(:U,y) dr + Q(x,y)dy = / <P(:z:,y(:z:)) + Q(x,y(x))y’(x))dx.

a

To evaluate a flux integral (§6.2) in R? (but not in R?), use the fact that F-n =
FJ_ ‘n| = FJ_ -T:

/CF~nds:/CFL~Tds:/CFL~dX:/C—Qd:U+de:/abF(fy(t))L-fy’(t)dt.

For path integrals with respect to arc length we have ds = % dt = ||7/(t) dt or ds =
[dX1[ = [l () dt]| = [lv" ()] d¢, and so
b

Lras= [ sx)as= [0l

In coordinates we have ds = \/dx? + dy? = \/2'(t)? + v/ (t)? dt, and so

b
[ ras= [ s = [ (e.00) VIO 07

If the curve is given by y = y(z) for a < x <b, then
b
/Cfds=/cf(:v,y)d8 =/ fa,y(@) V1 +y ()2 dr.

When f = 1, the length of the curve is then f; 1+ v/ (x)? dz, a formula you may remem-
ber from Math 112.

PATH INTEGRALS AND GREEN’S THEOREM (§6.2)

Green’s Theorem and Variations. Let R be a bounded region in R? with piecewise
C' boundary OR, oriented in the positive direction. Suppose that F = Pi + Qj is a C*
vector field on R. Then

}{ de+Qdy:}{ F.-dX = F-Tds:// (6—Q—6—P)dA:// curl FdA
AR AR R r \ Oz y R
and

j{ F-nds:// divFdA.

OR R

The last variation is known as the Divergence Theorem.

3



Green’s Theorem is an important generalzation of the Fundamental Theorem of Cal-
culus, f(b) — f(a) = f; f'(x)dz. Both say that an oriented sum of a quantity on the
boundary is equal to the sum of some derivative of the quantity on the interior.

Recall the interpretations of fa g F - Tds and fa r F -nds in the second section above.
Green’s Theorem then gives interpretations to curl F and divF as measures of rotation
and expansion.

Green’s Theorem and its variations generalize to R? in two ways, known as the theorems
of Gauss and Stokes (§7.3). They generalize further to fairly general multi-dimensional
surfaces and solids, and are known collectively simply as Stokes’ Theorem (§8.3). It is an
important theorem of modern mathematics.

Generalized Stokes’ Theorem (or the FTC on steroids). Let M be an oriented
n-dimensional manifold with boundary OM. Let « be a differential form of degree n — 1

on M. Then
/ a:/ do.
oM M

This is the Fundamental Theorem of Calculus (Math 111 version and for path integrals,
Theorem 1 below), Green’s Theorem, the Divergence Theorem, the theorems of Gauss and
Stokes, and more, all rolled into one!

PATH INTEGRAL VERSION OF THE FUNDAMENTAL THEOREM OF CALCULUS (§6.3)

Theorem 1. Suppose that U is an open set in E", that f: U — R is C*, and that C is
a piecewise C'! oriented path in U from A to B. Then

B

/C Vf-dX = 1(X)| = £(B) - f(A).

A =
This is part of Theorem 3.3 in Colley.

PATH INTEGRALS AND CONSERVATIVE VECTOR FIELDS (§6.3)

Looking through my collection of mathematics and physics books, I find that mathe-
maticians and physicists give different definitions for a conservative vector field!

Mathematician’s Definition. Suppose that U is an open set in E™ and that F is a
continuous vector field on U. We say that F is conservative if F is the gradient of some
function on U, that is, if there is a function f: U — R such that F = Vf.

Note: If F = Vf, then f is called a potential for F (physicists call — f a potential).

Physicist’s Definition. Suppose that U is an open set in E™ and that F is a continuous
vector field on U. They say that F is conservative if for every piecewise C'!' path C in U,
the integral fc F - dX depends only on the endpoints of C. Another way to say this is
that for every pair of piecewise C' paths C' and C in U joining the same two points we



have [ F-dX = [-F-dX. (Note: Sometimes this condition on [, F - dX is described
by saying that the integral is independent of path. This is really a misstatement. The
integral does depend on the path somewhat; it depends on its endpoints.)

These two definitions are really just different points of view because of the following the-
orem.

Theorem 2. Suppose that U is an open set in E™ and that F is a continuous vector field
on U. Then the following statements about F are equivalent.

(1) F is the gradient of some function. (Math definition of conservative)

(2) For every piecewise C1 path C in U, the integral fc F - dX depends only on the
endpoints of C'. (Physics definition of conservative)

(3) For every piecewise C! loop C in U, we have JoF-dX =0.

Note that (1) <= (2) is part of Theorem 3.3 in Colley and (2) <= (3) is Theorem 3.2.
The next theorem says that it is almost the case that a vector field F is conservative if
and only if curl F = 0.

Theorem (Test for Conservative Vector Fields). Suppose that U is an open set in
E? or E? and that F is a C! vector field on U.

(1) If F is conservative, then curl F = 0.
(2) Suppose U is simply connected. Then F is conservative if and only if curl F = 0.

Remarks. In R? we have F = Pi+ Qj, where P and Q are the coordinate functions of F.

Then curl F = g—? — 88—1;.

e Part (1) of the theorem is just a restatement of something we saw earlier, namely,
if F is a gradient, then g—g = 88—1;. (This generalizes in R3 to three equations, since
curl F is a vector.)

e The expression g—? — 88—1; appears in the double integral in Green’s Theorem (§6.2).
(In R3 the coefficients of curl F appear in a coordinate version of Stokes’ Theorem
(§7.3)), a formula that is truly scary and does not often appear in undergraduate

texts!)

If the set U is not simply connected (in R? this happens if it has one or more holes) and
curl F = 0, the vector field F might be a gradient, but it need not be. For a discussion on
this, see the handout “A Curl-Free Vector Field that is not a Gradient.”

Note to physics majors. When I took physics, I remember when determining that curl F =
0 for a vector field, the next step was almost always to assume that F has a potential—it was
hard to imagine it not having a potential. Learning that F' does not have to have a potential
was disconcerting. Hopefully this will cause you to ponder why the important physical
vector fields that are curl-free (gravitational, electric) have potentials, what physics would
be like if they didn’t, what physical properties cause this, and how we know.
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