
PATH INTEGRALS WITH RESPECT TO ARC-LENGTH

There are two types of path integrals, path integrals with respect to arc-length (scalar
path integrals) and integrals of a vector field along a path (vector path integrals). Path
integrals with respect to arc-length are used in physics to compute the moments and center
of mass of a wire.

Let C be a path in R
3, and let f be a function along the curve. We want to make sense

out of ∫
C

f ds.

The idea is that at each point along the curve, an infinitesimal length ds of the curve
is multiplied by the value of the function f at that point, and the result is summed
(integrated) along the curve.

Here are some common examples of integrals with respect to arc-length.
(1) L =

∫
C

ds is the length of the curve, in which the function being integrated is the
constant 1.

(2) If δ is the mass density per unit length, then M =
∫

C δ ds is the mass of the curve
(think of it as a wire with variable mass density).

(3)
∫

C
xds is the geometric x-moment of the curve (or the moment about the yz-plane).

It is, effectively, the sum of the x-coordinates of the points on the curve. If L is
the length of the curve, then xc = 1

L

∫
C

xds is the average x-coordinate. If you do
the same thing with y and z, then (xc, yc, zc) is called the centroid of the curve,
which should be thought of as the average position of the points on the curve.

(4) If δ is the mass density, then
∫
C xδ ds is the physical x-moment of the wire. If

M is the mass of the wire, then xcm = 1
M

∫
C

xδ ds is x-coordinate of the average
location of mass (the center of mass). Doing the same thing with y and z you get
the center of mass (xcm, ycm, zcm).

The function f is a function of position on the curve. Quite often it can be written as a
function of position in R

3, that is f : R
3 → R. (This is the case in

∫
C xds, where f(x, y, z) =

x.) Suppose that (x, y, z) = (x(t), y(t), z(t)) = γ(t), a ≤ t ≤ b is a parameterization of C .
Working intuitively, as when computing arc-length, we have

ds =
√

dx2 + dy2 + dz2 =
√(

dx
dt

)2 +
(

dy
dt

)2 +
(

dz
dt

)2
dt = ‖γ′(t)‖ dt.

Then
∫

C

f ds =
∫ b

a

f
(
x(t), y(t), z(t)

)√(
dx
dt

)2 +
(

dy
dt

)2 +
(

dz
dt

)2
dt =

∫ b

a

f(γ(t)) ‖γ′(t)‖ dt.

This “substitution” turns
∫

C
f ds into a Math 111 integral in which the variable of inte-

gration is the parameter. With obvious modifications, this can be done in any R
n.



Example. Let C be the curve parameterized by γ(t) = (x(t), y(t)) = (t− sin t, 1−cos t), for
0 ≤ t ≤ 2π. This is one arch of a cycloid. We will find its centroid. This example is worked
out in the Mathematica notebook PathIntegral.nb in the Math 225 folder. Take some time
to go through the computations both by hand seeing how it is done using Mathematica.

The term ds occurs in all of the integrals, so compute it first:

ds =
√(

dx
dt

)2 +
(

dy
dt

)2
dt = ‖γ′(t)‖ dt =

√
(1 − cos t)2 + sin2 t dt =

√
2 − 2 cos t dt.

The length of C is then

L =
∫

C

ds =
∫ 2π

0

‖γ′(t)‖ dt =
∫ 2π

0

√
2 − 2 cos t dt = 8.

To compute the geometric x-moment of C (the moment about the y-axis), put in x =
x(t) = t − sin t, getting

∫
C

xds =
∫ 2π

0

x(t) ‖γ′(t)‖ dt =
∫ 2π

0

(t − sin t)
√

2 − 2 cos t dt = 8π.

The x-coordinate of the centroid (“average” value of x on the curve) is then

xc =
1
L

∫
C

xds = π,

which is not surprising because of the symmetry of the curve. In fact, if this computation
could have been skipped by observing the symmetry! The y-coordinate is more interesting.
The moment about the x-axis is

∫
C

y ds =
∫ 2π

0

y(t) ‖γ′(t)‖ dt =
∫ 2π

0

(1 − cos t)
√

2 − 2 cos t dt = 32/3,

and so
yc =

1
L

∫
C

y ds =
4
3
.

The centroid is the point (xc, yc) = (π, 4/3).

As with arc-length integrals, integrals with respect to arc-length often have integrands
that don’t have elementary antiderivatives. In this case, the only way to evaluate them is
to approximate them numerically. You should always get exact answers if possible, and
resort to numerical approximations only when necessary.



How the Two Types of Path Integrals are Different

It is important to note that a path integral with respect to arc-length does not depend
on the orientation, or direction, of the path. If −C denotes the path C with its orientation
reversed, then ∫

C

f ds =
∫
−C

f ds.

On the other hand, if F = F(x, y, z) is a continuous vectorfield on R
3, the path integral∫

C
F · dx, does depend on orientation, since

∫
C

F·dx = −
∫
−C

F·dx,

as is discussed in our text.

How the Two Types of Path Integrals are Related

Let’s suppose that C is parameterized by arc-length, that is, C is the image of a pa-
rameterized curve γ : [a, b] → R

3 that is a function of s, where s measures distance along
the path from some point. In this case, γ′(s) = dγ/ds = T, where T is the unit tangent
vector along the curve. We then have

∫
C

F·dx =
∫ b

a

F(γ(s))·γ′(s)ds =
∫ b

a

F(γ(s))·T(γ(s))ds =
∫

C

F·T ds,

that is,
∫
C

F·dx =
∫
C

f ds, where f is the function F · T along the curve.
It’s important to realize that even though we have written the integral of the vector

field as an arc-length integral, it still depends on the orientation of the curve. If the
orientation of the curve is reversed, then the unit vector T switches directions. Thus the
function f = F ·T in one direction is the negative of the function f̃ = F ·T in the opposite
direction.



Additional Problems on Path Integrals With Respect to Arc Length
Math 225

You will need Mathematica on most of these.

1. Evaluate the following path integrals, where C is as indicated:

(a)
∫
C(x3 + y) ds; C : x = 3t, y = t3, 0 ≤ t ≤ 1

(b)
∫
C xy2/5 ds; C : x = t/2, y = t5/2, 0 ≤ t ≤ 1

(c)
∫
C xyz ds; C is the line segment from (0, 0, 0) to (1, 2, 3)

(d)
∫
C(xy + z) ds; C : x = cos t, y = sin t, z = t, 0 ≤ t ≤ 2π

2. For each of the following thin wires with given mass density, a) find the length
and centroid, b) find the mass and center of mass, c) plot the curve, its centroid,
and its center of mass.

(a) The wire lies along the parabola y = 4 − x2 in R2 between (−2, 0) and
(2, 0). The density δ is proportional to the distance from the y-axis.

(b) The wire lies along the graph of y =
√

1 − x2 in R2 between (−1, 0) and
(1, 0). The density δ is proportional to the distance from the x-axis.

(c) The wire lies along the helix x = cos t, y = sin t, z = t, 0 ≤ t ≤ 3π, in R3.
The density δ is proportional to the distance from the (x, y)-plane.


