
TWO VERY USEFUL THINGS FROM LINEAR ALGEBRA

Math 225

Find these two things in your linear algebra book!

Finding Coefficients Relative to an Orthogonal Basis

Suppose v1, . . . , vn form a basis for a vector space. Given a vector w in the space, one often
needs to write w as a linear combination of the basis vectors, that is, one needs to find scalars a1,
. . . , an such that

w = a1v1 + · · ·+ anvn.

(The fact that these scalars exist and are unique is a consequence of v1, . . . , vn forming a basis.) In
general, finding these coefficients can be very messy—it involves a linear system of n equations in n
unknowns. However, if the basis vectors are mutually orthogonal, there is a much easier approach.
An example will illustrate the general process.

Consider the vectors

v1 = 2i + j − k, v2 = i − 2j, and v3 = 2i + j + 5k

in R
3. These are mutually orthogonal (which you should verify). Since there are three of them and

R
3 is a three-dimensional vector space, v1, v2, and v3 form a basis. Let w = 6i + 2j − 5k. We

want to find scalars a1, a2, a3 such that

w = a1v1 + a2v2 + a3v3.

To find the coefficients, dot both sides of this with v1, v2, and v3, successively. Dotting both sides
with v1 yields

w · v1 = (a1v1 + a2v2 + a3v3) · v1 = a1(v1 · v1).

Note that two of the three terms are zero because v1 is orthogonal to v2 and v3. Plugging in the
specific vectors yields

19 = a1(6), and so a1 =
19
6

.

Similarly,

2 = w · v2 = a2(v2 · v2) = a2(5) and − 11 = w · v3 = a3(v3 · v3) = a3(30),

and so a2 = 2/5 and a3 = −11/30. Thus,

w =
19
6

v1 +
2
5
v2 − 11

30
v3.

This is much easier than solving the system of equations, but it only works for orthogonal bases.
(Think about what would happen above if v1, v2, and v3 were not orthogonal.) This is why
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your linear algebra book spent time on orthonormal bases. (An orthonormal basis is one in which
the basis vectors are mutually orthogonal and unit vectors. The most important feature of an
orthonormal basis is that the vectors are orthogonal, not that they are unit vectors.)

If you go back through the derivation above without using the specific vectors, you will get

w =
w · v1

‖v1‖2 v1 +
w · v2

‖v2‖2 v2 +
w · v3

‖v3‖2 v3.

This is simply the sum of the projections of w in the directions of the basis vectors. Again, this
works because the vectors are orthogonal. If v1, v2, and v3 are unit vectors in addition to being
orthogonal, then the formula simplifies to

w = (w · v1)v1 + (w · v2)v2 + (w · v3)v3.

The Matrix of a Linear Transformation

If V and W are vector spaces, recall that a function L : V → W is linear if

L(x + y) = L(x) + L(y) and L(ax) = aL(x)

for all x, y in V and all a in R.
Suppose L : R

k → R
� is linear. Then L is represented by matrix multiplication, that is, there is

an � × k matrix A such that L(x) = Ax for all x in R
k. Here is the procedure for computing the

matrix A.

• Let e1, . . . , ek be the standard basis of R
k.

• Compute L(e1), . . . , L(ek). These are vectors in R
�.

• Write the vectors from the previous step as columns.

• Use the columns to construct the matrix.

In short, L(ej) is the jth column of A.

Example. Define L : R
3 → R

2 by L(x, y, z) = (3x− 2y + 5z,−2x + y + 4z). This is linear (which
you might try verifying).

• The standard basis of R
3 consists of i, j, and k.

• L(i) = L(1, 0, 0) = (3,−2), L(j) = L(0, 1, 0) = (−2, 1), and L(k) = L(0, 0, 1) = (5, 4).

• The columns of A are
(

3

−2

)
,
(

−2

1

)
, and

(
5

4

)
.

• A =
(

3 −2 5
−2 1 4

)
.

You can see the coefficients of the matrix in the formula for L, but you won’t always have a
formula!

Sometimes it is useful to use bases other than the standard bases. Sometimes you have to if you
are using vector spaces that don’t have standard bases. In this case the process is similar. Suppose
V and W are vector spaces and that L : V → W is linear.
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• Suppose v1, . . . , vk form a basis for V and that w1, . . . , w� form a basis for W . To find the
matrix A that represents L relative to these bases:

• Compute L(v1), . . . , L(vk). These are vectors in W .

• Write each vector in the previous part in terms of the basis for W , that is, express each as a
linear combination of w1, . . . , w�. (This is easy if w1, . . . , w� are orthogonal—see the first part
of the handout.)

• Write the coefficients of each L(vj) found in the previous part as a column.

• Use the columns to construct the matrix.

In short, L(vj) determines the jth column of A. To get the column, express L(vj) in terms of the
basis for W . The column consists of the coefficients.

Example. Let L be the same linear map as in the previous example. For R
3 use the basis

v1 = −i + 2j + k, v2 = 3i− j − 2k, v3 = j − k.

For R
2 use the basis

w1 = 2i + 3j, w2 = −3i + 2j.

Note this basis is orthogonal.

• L(v1) = L(−1, 2, 1) = (−2, 8) = −2i + 8j
L(v2) = L(3,−1,−2) = (1,−15) = i − 15j
L(v3) = L(0, 1,−1) = (−7,−3) = −7i − 3j

• Using the method of the first part of the handout, show that

L(v1) = −2i + 8j =
20
13

w1 +
22
13

w2

L(v2) = i− 15j = −43
13

w1 − 33
13

w2

L(v3) = −7i − 3j = −23
13

w1 +
15
13

w2

• The columns are
(

20/13

22/13

)
,
( −43/13

−33/13

)
, and

( −23/13

15/13

)
.

• The matrix is (
20/13 −43/13 −23/13
22/13 −33/13 15/13

)
=

1
13

(
20 −43 −23
22 −33 15

)
.

Note: It’s the same linear map, but a different matrix, because we are using different bases.
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