GEOMETRY OF CURVES IN E?

This is a summary of the formulas on the geometry of curves in E?. Note that my
approach to this is slightly different than the one in the book. The difference is in the way
the unit normal and curvature are defined.

Let v: R — E? be a curve that is twice continuously differentiable, that is, the velocity
and acceleration vectors, v = v’ and a = 4" are defined and continuous as vector-valued
functions of . (Note: The domain of v doesn’t have to be R, but can be any interval in
R.) Let X = «(¢t) be a typical point on the curve.

Arc-Length. Arc-length measures distance along the curve. We can start measuring at
any point, that is, at any time. If we start measuring at t = a, then we have s = 0 when
t = a. Note that s increases in the direction of motion. (The direction of motion is called
the orientation of the curve.)
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Arc-length can be used as a parameter. This means that quantities that depend on
position on the curve, namely X, v, a, and &, can be thought of as functions of s as well
as t. A quantity that is differentiable as a function of ¢ is also differentiable with respect
to s at points where v # 0. The chain rule tells us how to switch between the two types
of derivatives:

du  dufdt  du/dt dw _ dw/dt  dw/dt dX _dX/dt v

- = = - = = —_— = = =T.
ds ds/dt vl ds  ds/dt Ivil ’ ds  ds/dt |v]|

The assumption that v # 0 will be made for the rest of these notes.




Unit Tangent and Normal Vectors. The unit tangent vector is defined by

v dX
T= —=—.
vl ds

So far, everything up to this point can be done for curves in E™. However, the definition of
the unit normal vector depends on being in two dimensions (and so then does everything
that depends on the unit normal):
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T is tangent to the curve and points in the direction of the orientation. N is perpendicular
to the curve, pointing to the left as you move along the curve. Note that if the orientation
of the curve is reversed, both T and N are reversed.
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N=T = (different from the book).

7
-3
T N
Curvature. Since T has constant length, its derivatives with respect to both ¢ and s are

perpendicular to T. Thus dT/ds is some multiple of N. That multiple is the curvature,
that is, curvature, &, is defined by the equation

dT
e kN.
The curvature measures how fast the curve is changing direction. The larger « is (and
the longer dT'/ds is), the sharper the curve is turning. A circle of radius r, oriented
counterclockwise, has curvature x = 1/r. A line has curvature x = 0. (You should be able
to prove these last two statements.

The vector dT/ds = kN is perpendicular to the curve and points towards the inside of
the curve. Thus, if the curve is turning counterclockwise, this vector points in the same
direction as N, and & is positive. If the curve is turning clockwise, this vector points in
the opposite direction as N, and x is negative. (Using the definitions in the book, the
curvature is always positive and N switches sides of the curve depending on the direction
of turning.) This approach (as opposed to the one in the book) allows N to be computed
more easily, and makes the curvature more meaningful, since it can distinguish between
clockwise and counterclockwise.

Let ¢ be the angle determined by the equation T = cos1i+ singj. This is the angle
between T and i. (Note that then T = u(yp), where u(y) is the unit direction vector used
in class.) It can be shown (a good chain rule exercise!) that x = dy/ds, thus the curvature
measures the rate of change of the this angle. This says, perhaps even more convincingly,
that curvature measures how fast the curve turns. Note that this formula also shows that
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k > 0 when the curve is turning counterclockwise and « { 0 when the curve is turning
clockwise.
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Radius of Curvature and Osculating Circle. The osculating circle is the circle that
best fits the curve at a point on the curve. Its center lies on the line perpendicular to the
curve at the point, and its radius is |p|, where p = 1/k. The scalar p, which is a function of
where you are on the curve, is called the radius of curvature even though it can be negative
(when & < 0). The center of the osculating circle is called the center of curvature. For a
specific value of ¢ the the center of curvature is the point v(t) + p(t)N(¢). As t varies, the
center and radius of curvature change, and the center of curvature traces another curve,
X + pN, called the evolute of the original curve. Note that we can think of X, p, and N
as being functions of s as well.
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A Moving Frame. You want to visualize T and N moving along the curve (there is
an animation of this in the Mathematica notebook Curvature.nb in the Math225 folder).
As such, they are called a moving frame for the curve. We are used to using i and j
as  the standard basis for vectors in two dimensions. Since T and N are independent,
they form a basis too. Thus we can express any vector in two dimensions as a linear
combination of T and N. Unlike i and j, the vectors T and N depend on the geometry of
the curve. Consequently, when a vector is expressed as a linear combination of T and N,
the coeflicients will tell us something about how that vector is related to the geometry of
the curve. The simplest examples are

dT ds
v =T and T kN, where v =|v| = e
A more substantial example is
dv
= —T g
a 7 + kv°N



This very cool formula, which resolves acceleration into components tangent and normal
to the curve, tells us how the physics of a moving particle is related to the geometry of
the curve. The physical quantities on the righthand side are v and dv/dt, the speed and
how fast it changes (not to be confused with acceleration). The geometric quantity is the
curvature x. The formula tells us that the component of a tangent to the curve changes the
speed of the particle, and the component perpendicular to the curve causes the particle to
turn. They combine to form the acceleration: it depends on both the speed of the particle
and the geometry of the path. You should be able to derive this formula, and that will
help you understand it. (Start by differentiating v = v'T.)

Computations. Note that it takes one derivative to define T, N, and ds/dt, and a
second derivative to define k. The other operations relating them are algebraic. It seems
reasonable to expect that these quantities will be algebraic combinations of v and a. This
is indeed the case. The formulas are

v ds a-v,

T=-——:, N=T — = ||v]], and k= .

vl I vl
The first two of these are definitions. The third is a consequence of the integral formula
for the arc length function s(¢) and the Fundamental Theorem of Calculus (remember it?).
You should be able to derive the formula for curvature. (Start by dotting the formula for
abyv,.)

Observation. The parameter doesn’t have to be thought of as time. Then v and a aren’t
velocity and acceleration, they’re just the first and second derivatives with respect to the
parameter. The curvature formula in this case becomes
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Examples.

(1) Consider the parabola y = z2. This can be parameterized by letting z = ¢ (or just
forget about ¢ and use z!). We have

T =t, y =t

In coordinates this is X = (t) = (¢,¢?). You should verify the following formulas.
Try them both by hand and by using Mathematica.
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The original curve is pictured along with its evolute (the curve traced out by the
center of curvature). The points corresponding to t = 0, 1 are indicated on the
curve, as are their centers of curvature and osculating circles. When ¢ = 0, the
point on the curve is the origin. The center of curvature is (0,1/2), the radius of
curvature is 1/2, and the curvature is 2. When ¢ = 1, the point on the curve is
(1,1). The center of curvature is (—4,7/2), the radius of curvature is 5v/5/2, and
the curvature is 2/(5v/5).




(2) It is important to realize that different orders of computation may be easier for
different problems, particularly if only partial information is given. For example,
suppose that the speed of the particle is d = v = v/2e? + 1 and that at ¢t = 0 the
acceleration is a = 2i — 3j. The formulas involving the vector v are useless since
we don’t know v. Nevertheless, we can still compute the components of a parallel
and normal to the direction of motion, that is, we can compute a7 and ay in the
expression

(cii_tT + k02N = a7 T + ayN,

and we can compute || (there’s not enough information to determine if the curve

is turning clockwise or counterclockwise, but there is enough to determine how

fast it is turning). We have % = 4¢?*/1/2¢2 —i— (Note that this is not the
magnitude of the acceleration') At t =0 we get & = 4//3. From the formula

la®=a-a=d2 + a% (why is this true?), we get

2
lan| = 4/ llall” - aF,

Then we have |ay| = |s[v? = 3|x| = 1/13 — 16/3 = v/69/3, and so |k| = v/69/9 at
t=0.

™

OSC«,daﬁ

Ciecle QM\\:\_%

e

C.ﬂﬂ\‘l@/"ﬁj. \\\\\ /////Q
Curvatusre ) “ ?“’ék# Camber~
whont =1

CM‘“‘% Cm’mewe
Whew £ =0




THE DIFFERENCE BETWEEN E2? AND E™ FOR 1 > 2

The theory of the geometry of curves differs slightly between E? and E™, n > 2. The
reason for this difference is essentially because the notion of “clockwise” makes sense in
two dimensions, but not in higher dimensions. Our text presents the theory in higher
dimensions and doesn’t do the two-dimensional case separately.

The reason for doing the two-dimensional case separately is that curvature will indicate
not only how fast a curve changes direction, but also whether it is turning clockwise or
counterclockwise.

Given a curve, you always start by defining the unit tangent vector T, no matter what
dimension the curve is in. Then things become different.

In E?, the unit normal vector is defined before the curvature by N = T,. Then the

curvature x is defined by the equation %E— = k. Note that £ can be positive or negative,
which distinguishes counterclockwise from clockwise.

In higher dimensions the curvature is defined first by x = H%H, and so x is non-
negative. Then the unit normal vector is defined by N = %‘é—f = % / “ ‘i—f”, provided « is

not zero.

Note that in all dimensions the formula % = kNN holds by definition, but that in two
dimensions this is the definition of x, whereas in higher dimensions it is the definition of
N.

Note also that computing ‘fi—rf directly as a derivative is usually difficult. Fortunately
it can be avoided. There are formulas for x and N in terms of velocity and acceleration
in E? and E® that are easier to use than the definitions. Similar formulas exist in higher
dimensions.

In E3 you need a third unit vector to make a moving frame. This vector is B = TxN,
and is called the unit bi-normal vector. The osculating circle is contained in the osculating
plane, which passes through the point X = v(¢) and is perpendicular to B. There is also
a quantity called torsion, denoted by 7, that measures how fast the curve is twisting out
of the osculating plane.




	GeomOfCurves.DoNotDelete
	GeomOfCurves.extrapage
	GeomOfCurves.DoNotDelete

