
Gradient, Divergence, Laplacian, and Curl

in Non-Euclidean Coordinate Systems

Math 225 supplement to Colley’s text, Section 3.4

Many problems are more easily stated and solved using a coordinate system other than
rectangular coordinates, for example polar coordinates. It is convenient to have formulas for
gradients and Laplacians of functions and divergence and curls of vector fields in terms of
other coordinate systems.

Coordinate Vector Fields

To do this we need analogs of i and j that are adapted to other coordinate systems. These
are called coordinate vector fields.

What are the important properties of i and j relative to the (x, y) coordinate system?

A) They are orthogonal.

B) They are unit vectors.

C) i points in the direction in which x increases and y is constant, and j points in the
direction in which y increases and x is constant.

D) i and j represent differentiation of a function by x and y. What this means is that if
f is a differentiable function, then

∂f

∂x
= Dif and

∂f

∂y
= Djf.

The function f plays a minor role in these equations. It can be replaced by any
differentiable quantity that depends on x and y. To deemphasize its role, we can write
the equations as

∂

∂x
= Di and

∂

∂y
= Dj,

which are equations about differential operators.

To indicate that i and j are related to the (x, y) coordinate system, we could write them as
vx and vy instead, or as ux and uy to remind ourselves that they are unit vectors. As a hint
of things to come, if we think of X = (x, y) as a moving point depending on x and y, we
have

i = vx =
∂X

∂x
and j = vy =

∂X

∂y
. (1)
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Coordinate Vector Fields for Polar Coordinates. Now suppose we have a polar coor-
dinate system (r, θ) in the plane E2. What we need are vectors vr and vθ that are related to
polar coordinates in the same way that i and j are related to Cartesian coordinates. These
will be the coordinate vector fields for polar coordinates. Unfortunately, for an arbitrary
coordinate system it is impossible to satisfy all four of the properties above. (It is a fairly
deep theorem in differential geometry that the only coordinate systems with coordinate vec-
tor fields that satisfy all four properties are Euclidean coordinates.) It turns out that the
important ones are C) and D), since these specify how the vectors are related to computing
the partial derivatives of a function.

When we use polar coordinates, the position X is a function of r and θ, that is, X =
X(r, θ). Taking our cue from (1), we define

vr =
∂X

∂r
and vθ =

∂X

∂θ
. (2)

We can verify that these satisfy C) and D) for polar coordinates without even needing their
formulas in terms of i and j.

To see that they satisfy C), note that the curve θ �→ X(r, θ) is, by definition, the path
taken when θ varies and r is fixed, namely a circle centered at the origin, oriented counter-
clockwise. Thus, its velocity vθ = ∂X

∂θ
points in the direction in which θ increases and r is

fixed. Similarly, vr = ∂X
∂r

points in the direction in which r increases and θ is fixed.
To verify D) we need the function-curve version of the chain rule, which we saw earlier

in the course: if f is differentiable function on En and X(t) is the position of a differentiable
curve in En, then

d

dt
f
(
X(t)

)
= ∇fX(t) · X ′(t).

If it is implicitly understood that X is a function of t, we might write this as d
dt

f(X) =

∇fX · dX
dt

, or even as df
dt

= ∇f · dX
dt

, although the latter form is an abuse of notation since f
is not really a function of t.

Now suppose f : E2 → R is differentiable. Then f is a function of r and θ (a formula for
f may or may not be written in terms of r and θ, but we can still talk about f as a function
of r and θ since they determine position). If we hold θ fixed, let r vary, and use the chain
rule formula, we get

∂f

∂r
=

∂

∂r
f
(
X(r, θ)

)
= ∇fX(r,θ) · ∂X

∂r
(r, θ) = ∇f · vr = Dvrf.

Similarly, if we hold r fixed and let θ vary, we get ∂f
∂θ

= ∇f · ∂X
∂θ

= ∇f · vθ = Dvθ
f . The

equations
∂f

∂r
= Dvr f and

∂f

∂θ
= Dvθ

f

say that vr and vθ represent differentiation of a function by r and θ, which verifies D). To
deemphasize the role of f , we can write these as equations of differential operators:

∂

∂r
= Dvr and

∂

∂θ
= Dvθ

.
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To check A) and B) we need formulas for vr and vθ in terms of the related Euclidean
coordinate system given by (x, y) = (r cos θ, r sin θ). We have

vr =
∂X

∂r
= cos θ i + sin θ j and vθ =

∂X

∂θ
= −r sin θ i + r cos θ j.

From these it is easily verified that vr and vθ are orthogonal, so they satisfy A). However,
only one of them is a unit vector, namely vr, so they do not satisfy B). We see that vr is a
unit vector pointing directly away from the origin. We have ‖vθ‖ = r. More specifically, we
have that vθ = r(vr)⊥.

Since unit vectors are useful, we define

ur = vr = cos θ i + sin θ j and uθ =
vθ

‖vθ‖ =
vθ

r
= − sin θ i + cos θ j,

and note that uθ = (ur)⊥. Colley neglected to give these formulas in the section on polar
coordinates (pg. 62), but they are the same as two of the three coordinate vector fields for
cylindrical coordinates on page 71. You should verify the coordinate vector field formulas
for spherical coordinates on page 72.

For any differentiable function f we have

Durf = Dvrf =
∂f

∂r
and Duθ

f =
1

r
Dvθ

f =
1

r

∂f

∂θ
. (3)

The second formula follows by applying the property Davf = ∇f · (av) = a∇f ·v = aDvf to
the case when av = 1

r
vθ. This illustrates an important feature of non-Euclidean coordinate

systems that is often counterintuitive:

The directional derivative of a function in the direction of a unit coordinate vector
need not be equal to the partial derivative of the function with respect to the
corresponding coordinate.

For polar coordinates we have ∂f
∂θ

�= Duθ
f .

Leaving f out of the formulas in (3) gives us equations of differential operators:

Dur = Dvr =
∂

∂r
and Duθ

=
1

r
Dvθ

=
1

r

∂

∂θ
. (4)

Coordinate Vector Fields in Non-orthogonal Coordinates (Optional). If (r, s) are
coordinates on E2, then position is a function of (r, s), that is, X = X(r, s). The same
reasoning as above implies that the coordinate vector fields for this coordinate system are
vr = ∂X

∂r
and vs = ∂X

∂s
. It is very important to note that these are not necessarily unit

vectors, and they are not necessarily orthogonal. In the nicest coordinate systems they are
orthogonal, and that is enough to make calculations with them relatively simple. Coordinate
vector fields in higher dimensions are similar.
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Example 1. Consider E2 with a Euclidean coordinate system (x, y). On the half of E2 on
which x > 0 we define coordinates (r, s) as follows. Given point X with Cartesian coordinates
(x, y) with x > 0, let

r = x and s = y/x.

Thus the new coordinates of X are its usual x coordinate and the slope of the line joining
X and the origin. Solving for x and y we have

x = r and y = rs.

The formula for X in terms of (r, s), which you can think of as a map from the rs-plane to
the xy-plane, is

X = (x, y) = X(r, s) = (r, rs).

The coordinate vector fields are then

vr =
∂X

∂r
= i + sj and vs =

∂X

∂s
= rj.

Notice that even though r = x, the coordinate vector field vr is not i. This is because the
coordinate vector fields for a coordinate system depend on all of the coordinates, not just
the particular coordinate. The vector vr points in the direction in which s is constant, so
it points along the lines through the origin. It points in the direction r increases, and its
length reflects how fast you have to go in order for r to increase by one in one unit of time.
Note also that vr and vs are not orthogonal.

Gradients in non-Euclidean Coordinate Systems

If f :E2 → R is differentiable and we express f in Euclidean coordinates (x, y), then the
gradient of f is given by ∇f = ∂f

∂x
i + ∂f

∂y
j. The generalization of this is the following. At any

point in E2, let u1 and u2 be orthogonal unit vectors (an orthonormal basis). Then

∇f = (Du1f)u1 + (Du2f)u2. (5)

If you like to think of ∇ as a operator involving vectors and differential operators, then

∇= u1Du1 + u2Du2 , which generalizes ∇= i
∂

∂x
+ j

∂

∂y
.

These formulas are actually coordinate-free in the sense that the vectors u1 and u2 are not
tied to any particular coordinate system. They can be used to compute the gradient of a
function in any coordinate system. Formula (5) is particularly easy to use in orthogonal
coordinate systems, that is, coordinate systems in which the coordinate vector fields are
orthogonal (which happens for polar, cylindrical, and spherical coordinates). In this case,
choose u1 and u2 to be the unit coordinate vector fields.
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Gradients in Polar Coordinates. If we apply formula (5) to polar coordinates with
u1 = ur and u2 = uθ and use the derivative formulas in (4), we get

∇f = (Durf)ur + (Duθ
f)uθ =

∂f

∂r
ur +

1

r

∂f

∂θ
uθ =

∂f

∂r
vr +

1

r2

∂f

∂θ
vθ. (6)

This is much easier than the proof the author of our text has in mind for this formula in
Theorem 4.5 of Section 3.4. As an exercise, this method to compute the formula for gradient
in spherical coordinates in Theorem 4.6 of Section 3.4.

Gradients in Non-orthogonal Coordinates (Optional). Suppose (r, s) are coordi-
nates on E2 and we want to determine the formula for ∇f in this coordinate system. In a
non-orthogonal coordinate system, applying (5) directly can be messy. The unit vectors ur

and us aren’t orthogonal, and so can’t be used for u1 and u2. (One of them can be used for
u1, and then u2 can be u1⊥, but the formula for u2 as a linear combination of ur and us will
likely be complicated.) Fortunately, a different approach can be taken.

The coordinate system is well-defined when the coordinate vector fields vr and vs are
independent. If f is a differentiable function, then ∇f will be some linear combination of vr

and vs, that is,
∇f = Avr + Bvs,

where the coefficients A and B are some functions of r and s. The procedure for determining
A and B is to dot both sides of this equation with vr and vs to produce two equations in
the unknowns A and B.

Example 2. We continue with the coordinates (r, s) on half of E2 in Example 1. The
coordinate vector fields are

vr =
∂X

∂r
= i + sj and vs =

∂X

∂s
= rj.

If f :E2 → R is differentiable, its gradient can be expressed as a linear combination of vr

and vs:
∇f = Avr + Bvs.

Dotting with vr and vs we get

∂f

∂r
= ∇f · vr = Avr·vr + Bvs·vr and

∂f

∂s
= ∇f · vs = Avr·vs + Bvs·vs.

Note that vr · vr = 1 + s2, vr · vs = rs, and vs · vs = r2. Thus we have

∂f

∂r
= A(1 + s2) + Brs and

∂f

∂s
= Ars + Br2,

which we view as a system of equations with A and B as the unknowns. Solving for A and
B we get

A =
∂f

∂r
− s

r

∂f

∂s
and B = −s

r

∂f

∂r
+

(
1 +

s2

r2

)
∂f

∂s
.
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This is done easily enough by hand, but more complicated equations may require Mathemat-
ica. I have added a section to the Mathematica notebook Coordinates.nb in the Math 225
folder illustrating this particular computation. Thus we have

∇f =

(
∂f

∂r
− s

r

∂f

∂s

)
vr +

(
−s

r

∂f

∂r
+

(
1 +

s2

r2

)
∂f

∂s

)
vs.

If you apply this process in polar coordinates (it’s much easier than in this example
because vr and vθ are orthogonal), you get

∇f =
∂f

∂r
vr +

1

r2

∂f

∂θ
vθ,

which is the same as (6).

Divergence in non-Euclidean Coordinate Systems

Suppose F is a vector field on E2. At every point F can be written as a linear combination
of i and j, that is,

F = P i + Qj,

where P and Q are functions. In Euclidean coordinates the divergence of F is given by

div F = ∇· F =
∂P

∂x
+

∂Q

∂y
,

which can be written as

divF = i · ∂F

∂x
+ j · ∂F

∂y
.

The coordinate-free generalization of this formula is

div F = u1·Du1F + u2·Du2F, (7)

where, as above, u1 and u2 form an orthonormal basis. You can still interpret this as ∇· F
for the generalized definition of ∇ above, however, the order of operations is important. The
derivatives must be taken before the dot products.

Divergence in Cylindrical Coordinates. Let’s apply the three-dimensional version of
(7) in cylindrical coordinates. Suppose F is a vector field on E3. At every point other than
the origin, we can write F as a linear combination of ur , uθ, and uz = k that is,

F = Pur + Quθ + Ruz

for some functions P , Q, and R. (Note: The coefficient functions P and Q are not the
same as the P and Q in Euclidean coordinates, however they are related by change-of-basis
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formulas, that is, the formulas relating ur and uθ to i and j.) Applying the three-dimensional
version of (7) to this, and remembering to use (4), we get

divF = ur·DurF + uθ·Duθ
F + uz·DuzF

= ur·∂F
∂r

+ uθ·1r ∂F
∂θ

+ uz·∂F
∂z

= ur· ∂
∂r

(Pur + Quθ + Ruz) + 1
r
uθ· ∂

∂θ
(Pur + Quθ + Ruz) + uz· ∂

∂z
(Pur + Quθ + Ruz).

Before going further, we note that ur and uθ are not constant vector fields, so they must
be differentiated along with the coefficients. (The third unit vector, uz, is constant, but that
is a feature of this particular coordinate system. For the moment we will pretend that it is
not constant.) Expanding this without thinking would produce a huge mess: the product
rule would result in eighteen terms! Most of them turn out to be zero, and many of these can
be determined by thinking about which vectors are orthogonal to each other. First consider

uθ· ∂
∂θ

(Pur + Quθ + Ruz).

Applying the product rule to expand ∂
∂θ

(Pur), one of the terms of uθ· ∂
∂θ

(Pur) is uθ·∂P
∂θ

ur.
This is zero because ur and uθ are orthogonal. One of the terms of uθ· ∂

∂θ
(Ruz) is zero for the

same reason. If we apply the product rule in uθ· ∂
∂θ

(Quθ), we get uθ·
(

∂Q
∂θ

uθ + Q∂uθ

∂θ

)
. The

first part of this is ∂Q
∂θ

because uθ is a unit vector. For the second part, recall that a vector

of constant length is orthogonal to its derivative. Thus, uθ and ∂uθ

∂θ
are orthogonal, and so

the second term for Quθ is zero.
Putting these observations together, we have

uθ· ∂
∂θ

(Pur + Quθ + Ruz) = Puθ·∂ur

∂θ
+ ∂Q

∂θ
+ Ruθ ·∂uz

∂θ
= uθ·

(
P ∂ur

∂θ
+ ∂Q

∂θ
uθ + R∂uz

∂θ

)
.

If we do the same for the other parts of divF, we get

divF = ur·
(

∂P
∂r

ur + Q∂uθ

∂r
+ R∂uz

∂r

)
+1

r
uθ·

(
P ∂ur

∂θ
+ ∂Q

∂θ
uθ + R∂uz

∂θ

)
+uz·

(
P ∂ur

∂z
+ Q∂uθ

∂z
+ ∂R

∂r
uz

)
.

Thus, half of the eighteen terms are zero and three of the remaining terms are done (the
ones involving the derivatives of P , Q, and R) simply by using the fact that ur, uθ, and uz

form an orthonormal basis. Moreover, the rest of the computation depends on knowing the
dot products of ur, uθ, and uz with their derivatives. This will be true for any orthogonal
coordinate system in three dimensions.

The nine derivatives of ur, uθ, and uz with respect to r, θ, and z are particularly simple.
From

ur = cos θ i + sin θ j uθ = − sin θ i + cos θ j and uz = k

we have
∂ur

∂θ
= − sin θ i + cos θ j, and

∂uθ

∂θ
= − cos θ i − sin θ j,

and all of the other derivatives are 0. It is convenient to express these in terms of the basis
ur, uθ, uz. We have

∂ur

∂θ
= uθ, and

∂uθ

∂θ
= −ur.
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This is easy to simply observe in this case. For other coordinate systems it may not be quite
this easy, but it is simplified when the coordinate vectors are orthogonal—see the handout
“Two Very Useful Things from Linear Algebra.”

Plugging this information into the last expression for divF yields

div F =
∂P

∂r
+

1

r

(
P +

∂Q

∂θ

)
+

∂R

∂z
=

∂P

∂r
+

1

r
P +

1

r

∂Q

∂θ
+

∂R

∂z
.

You should be sure to check this so you see where everything comes from. Since 1
r

∂
∂r

(rP ) =
P
r

+ ∂P
∂r

, some people like to write this as

divF =
1

r

∂

∂r
(rP ) +

1

r

∂Q

∂θ
+

∂R

∂z
, or even as div F =

1

r

(
∂

∂r
(rP ) +

∂Q

∂θ
+

∂

∂z
(rR)

)
.

If this seems messy, compare it with the computation of divF in cylindrical coordinates in
the text, in the proof of Theorem 4.5, Section3.4. You should try verifying the formula for
divergence in spherical coordinates (Theorem 4.6).

A Final Comment about Divergence (Optional). If f is a function and F and G are
vector fields, all on En, the following sum and product rules hold for divergence:

div(F + G) = divF + div G and div(fF) = ∇f · F + f div F.

These are easy to verify using Euclidean coordinates, or by using the coordinate-free formulas
for gradient and divergence in (5) and (7).

Suppose (r, s) is a coordinate system on E2 with coordinate vectors vr and vs and unit
coordinate vectors ur and us. If F is a vector field, then F = Pur +Qus for some coefficients
P and Q. If (r, s) is a Euclidean coordinate system, then the divergence of F is, of course
∂P
∂r

+ ∂Q
∂s

.
For a general coordinate system (even non-orthogonal) we have (applying the sum and

product rules)

div F = div(Pur) + div(Qus)

= ∇P · ur + P divur + ∇Q · us + Q divus

= DurP + P divur + DusQ + Q divus

=
1

‖vr‖DvrP + P divur +
1

‖vs‖DvsQ + Q divus

=
1

‖vr‖
∂P

∂r
+ P div ur +

1

‖vs‖
∂Q

∂s
+ Q divus.

Things are easier if you abandon the unit vectors and use vr and vs as a basis. Then we
have F = pvr + qvs. These coefficients are not the same as P and Q, however, p ‖vr‖ = P
and q ‖vs‖ = Q. An easy modification of the previous computation yields

divF =
∂p

∂r
+ pdiv vr +

∂q

∂s
+ q div vs.
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Both of these formulas for divergence show how the extra coefficients and terms in the ex-
pression for divergence arise from the coordinate system being non-Euclidean. This formula
can also be used to compute an explicit formula for divergence in a non-Euclidean coordinate
system, even non-orthogonal coordinates.

Laplacian in non-Euclidean Coordinate Systems

If f :E2 → R is twice differentiable, the Laplacian of f is the the divergence of ∇f ,

Δf = div(∇f) = ∇· (∇f).

In Euclidean coordinates this is Δf = ∂2f
∂x2 + ∂2f

∂y2 . It’s popular to write this as ∇· ∇f =

(∇· ∇)f = ∇2f , and this works since ∇· ∇= ∂2

∂x2 + ∂2

∂y2 in these coordinates. It’s tempting
to generalize this as

Δ = ∇· ∇= (u1Du1 + u2Du2) · (u1Du1 + u2Du2)
?
= D2

u1
+ D2

u2
,

but this overlooks a subtlety. The last equality is not true unless u1 and u2 are constant vec-
tor fields, which of course they aren’t when dealing with non-Euclidean coordinate systems.
In expanding the dot product, the derivative operators Du1 and Du2 in the first factor have
to be applied to the vectors u1 and u2 in the second factor before the dot product is taken.1

Fortunately, there is an easier way. Assuming we have formulas for gradient and divergence
in a coordinate system, we can simply use them to get the formula for Laplacian.

Laplacian in Polar Coordinates. In polar coordinates we have

∇f =
∂f

∂r
ur +

1

r

∂f

∂θ
uθ and div(Pur + Quθ) =

1

r

∂

∂r
(rP ) +

1

r

∂Q

∂θ
.

Thus,

Δf = div

(
∂f

∂r
ur +

1

r

∂f

∂θ
uθ

)
=

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r

∂

∂θ

(
1

r

∂f

∂θ

)
=

1

r

∂f

∂r
+

∂2f

∂r2
+

1

r2

∂2f

∂θ2
.

This formula is in Exercise 31 of Section 2.5, but there it is expressed without the function
f . You should try deriving the formula for Laplacian in spherical coordinates (Exercise 33,
Section 2.5).

Curl in non-Euclidean Coordinate Systems

In E2 we have curlF = ∇⊥ · F and in E3 we have curlF = ∇×F.

1The resulting formula is somewhat interesting: ∇·∇= D2
u1

+ D2
u2

+ (divu1)Du1 + (divu2)Du2 .
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Two Dimensions. If F = P i + Qj on E2, then

curlF = ∇⊥ · F =

(
i

∂

∂x
+ j

∂

∂y

)
⊥
·F =

∂Q

∂x
− ∂P

∂y
= det

(
∂/∂x ∂/∂y

P Q

)
.

This can also be written as

curlF = ∇⊥ · F = i⊥·∂F

∂x
+ j⊥·∂F

∂y
.

The generalization of this for orthonormal basis vectors u1 and u2 is

curlF = (u1)⊥·Du1F + (u2)⊥·Du2F. (8)

Once again, this can be interpreted as ∇⊥ ·F as long as you are careful to take the derivatives
before the dot products.

The orthonormal basis vectors u1 and u2 are said to be positively-oriented if u2 = (u1)⊥.
Note that the standard basis vectors i and j have this property. (The order is important—
the second basis vector is the perp of the first.) With this assumption, and stretching the
meaning of determinant a bit, curlF can be written as

curlF = ∇⊥ · F = u2·Du1F − u1·Du2F = det

(
Du1F Du2F
u1 u2

)
.

Note that the entries of this matrix are vectors, and the product you use when expanding it
is dot product. I’m not convinced that this is a useful formula.

Curl in Polar Coordinates. Let’s use (8) to compute curlF in polar coordinates. The
computation is very similar to that of divF above. Assume F = Pur + Quθ. We have

curlF = (ur)⊥·DurF + (uθ)⊥·Duθ
F = uθ·∂F

∂r
− ur·1

r

∂F

∂θ

= uθ· ∂

∂r
(Pur + Quθ) − ur·1

r

∂

∂θ
(Pur + Quθ)

=
∂Q

∂r
− 1

r

(
∂P

∂θ
− Q

)
=

1

r

(
∂

∂r
(rQ) − ∂P

∂θ

)
=

1

r
det

(
∂/∂r ∂/∂θ
P rQ

)
.

Three Dimensions. If F is a vector field on E3, then

curlF = ∇×F =

(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
× F = i×∂F

∂x
+ j×∂F

∂y
+ k×∂F

∂z
.

By now you can probably guess what the generalization of this is. If u1, u2, and u3 form an
orthonormal basis, then

curlF = ∇×F = (u1Du1 + u2Du2 + u3Du3) × F

= u1×Du1F + u2×Du2F + u3×Du3F.
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While this can be massaged into a determinant formula, it takes a bit of work, isn’t very
enlightening, and stretches the notion of determinant even more.

You should try deriving the formulas for curl in cylindrical and spherical coordinates.

Coordinate Vector Fields, Gradient, Divergence, Laplacian, and

Curl in Other Settings

Let S be a surface in E3, for example, a sphere or torus. The ideas presented above can be
used to define these concepts on S. We have seen examples of coordinates on surfaces, and
gradient, divergence, etc., can be expressed in those coordinates.

Robert L. Foote, October 2005
Revised October 2014
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