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Recall our main theorem about vector fields.

Theorem. Let R be an open region in E2 and let F be a C1 vector field on R. The
following statements about F are equivalent:

(1) There is a differentiable function f : R → R such that ∇f = F.
(2) If C is a piecewise C1 path in R, then

∫
C

F · dx depends only on the endpoints of
C .

(3)
∮

C
F · dx = 0 for every piecewise C1 simple, closed curve in R.

Furthermore, statements (1)–(3) imply

(4) curlF = 0,

and (4) implies (1)–(3) when R is simply connected (so all four are equivalent when R is
simply connected).

The purpose of this handout is to explore what happens when R is not simply connected,
that is, when there exist non-gradient vector fields with zero curl.

An important example

Consider the vector field
F =

−y

x2 + y2
i +

x

x2 + y2
j

defined on R = R
2\{(0, 0)}, that is, on all of R

2 except the origin. Letting P = −y/(x2+y2)
and Q = x/(x2 + y2), it is a simple matter to show that ∂Q

∂x = ∂P
∂y , and so curlF = 0.

We can show that (1)–(3) are false for F by finding a simple, closed curve C for which∮
C

F · dx �= 0. Let C be the unit circle parameterized counterclockwise by x = cos t,
y = sin t, 0 ≤ t ≤ 2π. We have

∮
C

F · dx =
∮

C

−y

x2 + y2
dx +

x

x2 + y2
dy

=
∫ 2π

0

− sin t

1
(− sin t)dt +

cos t

1
cos t dt =

∫ 2π

0

dt = 2π.

It follows from the theorem that F is not the gradient of any function defined on R.
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Exercise 1. Show that if C is any circle centered at the origin oriented counterclockwise,
then

∮
C F ·dx = 2π, that is, the radius of the circle does not affect the value of the integral.

Exercise 2. Let D be a disk centered at the origin. Since curlF = 0, it would be very
easy to use Green’s Theorem to conclude that

∮
C

F · dx =
∫∫

D
curlF dA =

∫∫
D

0 dA = 0,
where the circle C is the boundary of D, in contrast to the previous exercise. Why is the
reasoning here incorrect?

Now suppose that R̃ is a simply connected subset of R. To be concrete, suppose R̃ is
all of R

2 except the negative x-axis. Then the theorem implies that F is the gradient of
some function f̃ : R̃ → R. Suppose further that R̂ is all of R

2 except the positive x-axis.
Then F is the gradient of some function f̂ : R̂ → R. Then the functions f̃ and f̂ have the
same gradient, namely F, on their common domain R̃ ∩ R̂. You might guess that if two
functions have the same gradient, then they must differ by a constant. That’s true, but
only if you restrict yourself to a connected set. In this case the common domain R̃ ∩ R̂
consists of two disjoint connected subsets, namely the upper and lower half planes (y > 0
on one and y < 0 on the other). Evidently the two functions differ by different constants
on these two half planes, so you can’t “fix” the situation by adding a constant to one of
them.

What can these functions be? Given a vector field with zero curl, you have a method
for finding a function whose gradient is the vector field. It’s a bit messy to apply with this
vector field, so I’ll just tell you what the answer is: it’s θ, the angle of polar coordinates,
plus an arbitrary constant, of course.

Exercise 3. Verify this by implicit differentiation. To do this, first show that x sin θ =
y cos θ (can you do this without dividing by anything that might be zero?). Then apply
∂
∂x to both sides of this, treating y as a constant and θ as a function of x and y.

Now you may be thinking that there is a contradiction here: first we decided that F is
not the gradient of any function on R, and then we showed that it is the gradient of θ! The
resolution of the apparent contradiction is that θ is not a well-defined function on R, even
though we often treat it as such. If you start with θ = 0 on the positive x-axis and then go
counterclockwise around the origin, θ increases. When you get close to the positive x-axis
in the fourth quadrant, θ is near 2π. There is no way to make it a continuous, let alone
differentiable, function on R. What about on R̃ and R̂? On R̃ you can take θ to have
values between −π and π. On R̂ you can take θ to have values between 0 and 2π. More
generally, if R̃ is an arbitrary simply connected subset of R, then F is the gradient of some
function f̃ : R̃ → R. By adding a constant, you can get f̃ + C to agree with some suitable
definition of θ on R̃, but it may not agree with any of the “usual” definitions of θ on all of
R.

Exercise 4. Suppose that R̃ is a connected, narrow spiral-shaped subregion of R that
contains (1, 0) and (5, 0), but that to get from (1, 0) to (5, 0), staying in the region, you
have to cross the negative x-axis. If f̃(1, 0) = 0, then f̃ agrees with the usual definition of
θ near (1, 0). What is f̃(5, 0) in this case? Notice that f̃ is well-defined, but that it takes
on a range of values larger than 2π!
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Exercise 5. Show that the following vector field, also with domain R, is the gradient of a
function defined on all of R:

x

x2 + y2
i +

y

x2 + y2
j

The general case on R = R
2 \ {(0, 0)}

Now suppose that G is an arbitrary vector field defined on R = R
2 \ {(0, 0)}, that

curlG = 0, and that G is not the gradient of any function. By the theorem, there must
be a simple, closed curve C such that

∮
C

G · dx �= 0. Let’s find one.
Suppose that C is a simple, closed curve in R. If C does not go around the origin, then

C is contained in some simply connected subregion R̃ of R. Then the theorem implies that∮
C

G · dx = 0. (You can also conclude this by applying Green’s Theorem to the region
bounded by C .) Thus, if C is a simple, closed curve for which

∮
C G · dx �= 0, then C must

go around the origin.
Suppose that C1 and C2 are two simple, closed curves in R that go around the origin

counterclockwise. Furthermore, assume that they don’t intersect and that C1 is the outer
curve. (Draw a picture!) Let Ω be the annular region between C1 and C2. Then ∂Ω is
C1 ∪ C2, which is given its correct orientation by having C1 go counterclockwise and C2

go clockwise. By Green’s Theorem we have

0 =
∫∫

Ω

curlGdA =
∮

∂Ω

G · dx =
∮

C1

G · dx −
∮

C2

G · dx,

and so ∮
C1

G · dx =
∮

C2

G · dx.

Exercise 6. Show that this holds even if C1 and C2 intersect.

Thus every simple, closed curve C that goes around the origin counterclockwise gives
the same non-zero value for the integral

∮
C

G ·dx. (This should remind you of Exercise 1.)
This number is a property of the vector field G. Denote this value by c.

Define a new vector field G̃ by modifying G:

G̃ = G− c

2π
F,

where F is the vector field in the previous section.
I claim that G̃ is the gradient of some function on R. To see this, suppose C is a

simple, closed curve in R. If C doesn’t go around the origin, then, as observed above,∮
C G · dx = 0. For the same reason,

∮
C F · dx = 0 (in fact F is a special case of G). Thus∮

C
G̃ · dx = 0.
Now suppose C goes around the origin counterclockwise. Then∮

C

G̃ · dx =
∮

C

G · dx − c

2π

∮
C

F · dx = c − c

2π
(2π) = 0.
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Since
∮
C

G · dx = 0 for every simple, closed curve C in R, the theorem implies that G̃ is
the gradient of some function g̃ : R → R. Recall that F is almost the gradient of θ, except
that θ isn’t a well-defined function on R. Similarly, G is almost the gradient of g̃ + cθ.
On a simply connected subregion of R, G will be the gradient of g̃ + cθ, where θ is some
extension of the usual θ to the subregion.

Note that this says that every vector field G on R that is curl-free and not a gradient
can be made into a gradient simply by adding a constant multiple of the vector field F
that is the main example,

F =
−y

x2 + y2
i +

x

x2 + y2
j.

Thus the vector field F is, in some sense, the only example, at least on R.

The case of more holes

Now suppose that R ⊂ R
2 is a region with finitely many holes. A hole can be more

than just a point; can be the result of removing a simply connected set. In general,
R = R0 \ (H1∪· · ·∪H̄n) in which R0 is a simply connected region, each Hi is a non-empty,
closed set that is either a point or the closure of a simply connected region, and the sets
H1, . . . , Hn are disjoint subsets of R0.

For each index i, let Pi(xi, yi) be a point in Hi, and consider the vector field

Fi =
−(y − yi)

(x − xi)2 + (y − yi)2
i +

x − xi

(x − xi)2 + (y − yi)2
j.

This is similar to the main example F, but it is centered at Pi instead of the origin. If r
denotes the position vector of a point X from the origin and r denotes the distance from
X to the origin, note that F can be written as F = r⊥/r2. In the same way, let ri = X−Pi

be the position vector of X relative to Pi, and let r = ‖X − Pi‖ = ‖ri‖ be the distance
from Pi to X. Then we have Fi = (ri)⊥/r2

i .
If C is a simple, closed curve in R oriented counterclockwise, then

∮
C

Fi · dx is equal
to 2π or 0 depending on whether C goes around Pi or not. More generally, suppose that
C is piecewise C1 loop in R. It can be shown that 1

2π

∮
C Fi · dx is an integer. It is called

the winding number of C around Pi because it counts how many times C goes around Pi.
Since C stays in R, this integer also counts the number of times C goes around Hi. The
collection of integers, 1

2π

∮
C

Fi ·dx for 1 ≤ i ≤ n, gives considerable information about how
the curve C makes its way around all of the holes in the region.

Exercise 7. Let P1(0, 0), P2(1, 0), P3(0, 1), and let F1, F2, and F3 be the corresponding
vector fields. Draw a closed curve C such that

1
2π

∮
C

F1 · dx = 2,
1
2π

∮
C

F2 · dx = 1, and
1
2π

∮
C

F3 · dx = −1.

Exercise 8. Suppose P1 is a point and F1 is the corresponding vector field. If C is a curve
such that

∮
C

F1 · dx = 0, it can be shown that C can be morphed to a point (a curve that
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doesn’t go anywhere) without passing through P1 during the morphing process. (This is
a substantial theorem. It says that no matter how crazy the curve C is, if

∮
C F1 · dx = 0,

then C can be “unwound” from around P1.) Let P1(0, 0) and P2(1, 0), and let F1 and F2

be the corresponding vector fields. Draw a closed curve C such that
∮

C

F1 · dx =
∮

C

F2 · dx = 0

for which it is intuitively clear that C cannot be morphed to a point without passing
through at least one of the points.

Suppose G is a vector field on R with curlG = 0. For each i, let Ci be a simple, closed
curve in R, oriented counterclockwise, that goes around the hole Hi, but none of the other
holes. Let ci =

∮
Ci

Fi · dx, and define a new vector field by

G̃ = G− 1
2π

n∑
i=1

ciFi.

Then it can be shown that G̃ is the gradient of some function on R. This implies that if
curlG = 0, then the only difference between G and a gradient is some linear combination
of the vector fields F1, . . . , Fn.

Exercise 9. Let G̃ be the vector field in the paragraph above. Prove that G̃ is the gradient
of some function on R. Do this by supposing that C is a piecewise C1, simple, closed curve
in R, and giving a careful explanation of why

∮
C

G̃ · dx = 0.
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