A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT

Robert L. Foote

Math 225

Recall our main theorem about vector fields.

Theorem. Let R be an open region in E^2 and let **F** be a C^1 vector field on R. The *following statements about* **F** *are equivalent:*

- (1) There is a differentiable function $f: R \to \mathbb{R}$ such that $\nabla f = \mathbf{F}$ *.*
- (2) *If C* is a piecewise C^1 path in R, then $\int_C \mathbf{F} \cdot d\mathbf{x}$ depends only on the endpoints of C*.*
- (3) $\oint_C \mathbf{F} \cdot d\mathbf{x} = 0$ for every piecewise C^1 simple, closed curve in R.

Furthermore, statements (1)–(3) *imply*

$$
(4) \ \operatorname{curl} \mathbf{F} = 0,
$$

and (4) *implies* (1)–(3) *when* R *is simply connected (so all four are equivalent when* R *is simply connected).*

The purpose of this handout is to explore what happens when R is not simply connected, that is, when there exist non-gradient vector fields with zero curl.

Consider the vector field

$$
\mathbf{F} = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}
$$

defined on $R = \mathbb{R}^2 \setminus \{(0,0)\}\$, that is, on all of \mathbb{R}^2 except the origin. Letting $P = -y/(x^2+y^2)$ and $Q = x/(x^2 + y^2)$, it is a simple matter to show that $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, and so curl **F** = 0. We can show that $(1)-(3)$ are false for **F** by finding a simple, closed curve C for which $\oint_C \mathbf{F} \cdot d\mathbf{x} \neq 0$. Let C be the unit circle parameterized counterclockwise by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$. We have

$$
\oint_C \mathbf{F} \cdot d\mathbf{x} = \oint_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy
$$
\n
$$
= \int_0^{2\pi} \frac{-\sin t}{1} (-\sin t) dt + \frac{\cos t}{1} \cos t dt = \int_0^{2\pi} dt = 2\pi.
$$

It follows from the theorem that **F** is not the gradient of any function defined on R.

Exercise 1. Show that if C is *any* circle centered at the origin oriented counterclockwise, then $\oint_C \mathbf{F} \cdot d\mathbf{x} = 2\pi$, that is, the radius of the circle does not affect the value of the integral.

Exercise 2. Let D be a disk centered at the origin. Since curl $\mathbf{F} = 0$, it would be very easy to use Green's Theorem to conclude that $\oint_C \mathbf{F} \cdot d\mathbf{x} = \iint_D \text{curl } \mathbf{F} dA = \iint_D 0 dA = 0$, where the circle C is the boundary of D, in contrast to the previous exercise. Why is the reasoning here incorrect?

Now suppose that R is a simply connected subset of R. To be concrete, suppose \tilde{R} is all of \mathbb{R}^2 except the negative x-axis. Then the theorem implies that **F** *is* the gradient of some function \tilde{f} : $\tilde{R} \to \mathbb{R}$. Suppose further that \hat{R} is all of \mathbb{R}^2 except the positive x-axis. Then **F** is the gradient of some function \hat{f} : $\hat{R} \to \mathbb{R}$. Then the functions \tilde{f} and \hat{f} have the same gradient, namely **F**, on their common domain $\tilde{R} \cap \tilde{R}$. You might guess that if two functions have the same gradient, then they must differ by a constant. That's true, but only if you restrict yourself to a connected set. In this case the common domain $\tilde{R} \cap \tilde{R}$ consists of *two* disjoint connected subsets, namely the upper and lower half planes $(y > 0)$ on one and $y < 0$ on the other). Evidently the two functions differ by different constants on these two half planes, so you can't "fix" the situation by adding a constant to one of them.

What can these functions be? Given a vector field with zero curl, you have a method for finding a function whose gradient is the vector field. It's a bit messy to apply with this vector field, so I'll just tell you what the answer is: it's θ , the angle of polar coordinates, plus an arbitrary constant, of course.

Exercise 3. Verify this by implicit differentiation. To do this, first show that $x \sin \theta =$ $y \cos \theta$ (can you do this without dividing by anything that might be zero?). Then apply $\frac{\partial}{\partial x}$ to both sides of this, treating y as a constant and θ as a function of x and y.

Now you may be thinking that there is a contradiction here: first we decided that **F** is not the gradient of any function on R, and then we showed that it is the gradient of θ ! The resolution of the apparent contradiction is that θ is not a well-defined function on R, even though we often treat it as such. If you start with $\theta = 0$ on the positive x-axis and then go counterclockwise around the origin, θ increases. When you get close to the positive x-axis in the fourth quadrant, θ is near 2π . There is no way to make it a continuous, let alone differentiable, function on R. What about on \tilde{R} and \tilde{R} ? On \tilde{R} you can take θ to have values between $-\pi$ and π . On R you can take θ to have values between 0 and 2π . More generally, if R is an arbitrary simply connected subset of R, then \bf{F} is the gradient of some function \tilde{f} : $\tilde{R} \to \mathbb{R}$. By adding a constant, you can get $\tilde{f} + C$ to agree with some suitable definition of θ on \tilde{R} , but it may not agree with any of the "usual" definitions of θ on all of R.

Exercise 4. Suppose that R is a connected, narrow spiral-shaped subregion of R that contains $(1,0)$ and $(5,0)$, but that to get from $(1,0)$ to $(5,0)$, staying in the region, you have to cross the negative x-axis. If $\hat{f}(1,0) = 0$, then \hat{f} agrees with the usual definition of θ near (1,0). What is $\tilde{f}(5,0)$ in this case? Notice that \tilde{f} is well-defined, but that it takes on a range of values larger than 2π !

Exercise 5. Show that the following vector field, also with domain R, is the gradient of a function defined on all of R:

$$
\frac{x}{x^2+y^2}\mathbf{i} + \frac{y}{x^2+y^2}\mathbf{j}
$$

THE GENERAL CASE ON $R = \mathbb{R}^2 \setminus \{(0,0)\}\$

Now suppose that **G** is an arbitrary vector field defined on $R = \mathbb{R}^2 \setminus \{(0,0)\},\$ that curl $G = 0$, and that G is not the gradient of any function. By the theorem, there must be a simple, closed curve C such that $\oint_C \mathbf{G} \cdot d\mathbf{x} \neq 0$. Let's find one.

Suppose that C is a simple, closed curve in R . If C does not go around the origin, then C is contained in some simply connected subregion \tilde{R} of R. Then the theorem implies that $\oint_C \mathbf{G} \cdot d\mathbf{x} = 0$. (You can also conclude this by applying Green's Theorem to the region bounded by C.) Thus, if C is a simple, closed curve for which $\oint_C \mathbf{G} \cdot d\mathbf{x} \neq 0$, then C must go around the origin.

Suppose that C_1 and C_2 are two simple, closed curves in R that go around the origin counterclockwise. Furthermore, assume that they don't intersect and that C_1 is the outer curve. (Draw a picture!) Let Ω be the annular region between C_1 and C_2 . Then $\partial\Omega$ is $C_1 \cup C_2$, which is given its correct orientation by having C_1 go counterclockwise and C_2 go clockwise. By Green's Theorem we have

$$
0 = \iint_{\Omega} \operatorname{curl} G \, dA = \oint_{\partial \Omega} \mathbf{G} \cdot d\mathbf{x} = \oint_{C_1} \mathbf{G} \cdot d\mathbf{x} - \oint_{C_2} \mathbf{G} \cdot d\mathbf{x},
$$

and so

$$
\oint_{C_1} \mathbf{G} \cdot d\mathbf{x} = \oint_{C_2} \mathbf{G} \cdot d\mathbf{x}.
$$

Exercise 6. Show that this holds even if C_1 and C_2 intersect.

Thus every simple, closed curve C that goes around the origin counterclockwise gives the same non-zero value for the integral $\oint_C \vec{G} \cdot d\mathbf{x}$. (This should remind you of Exercise 1.) This number is a property of the vector field **G**. Denote this value by c.

Define a new vector field **G** by modifying **G**:

$$
\widetilde{\mathbf{G}} = \mathbf{G} - \frac{c}{2\pi} \mathbf{F},
$$

where **F** is the vector field in the previous section.

I claim that **G** is the gradient of some function on R. To see this, suppose C is a simple, closed curve in R . If C doesn't go around the origin, then, as observed above, $\oint_C \mathbf{G} \cdot d\mathbf{x} = 0$. For the same reason, $\oint_C \mathbf{F} \cdot d\mathbf{x} = 0$ (in fact **F** is a special case of **G**). Thus $\oint_C \widetilde{\mathbf{G}} \cdot d\mathbf{x} = 0.$

Now suppose C goes around the origin counterclockwise. Then

$$
\oint_C \widetilde{\mathbf{G}} \cdot d\mathbf{x} = \oint_C \mathbf{G} \cdot d\mathbf{x} - \frac{c}{2\pi} \oint_C \mathbf{F} \cdot d\mathbf{x} = c - \frac{c}{2\pi} (2\pi) = 0.
$$

Since $\oint_C \mathbf{G} \cdot d\mathbf{x} = 0$ for every simple, closed curve C in R, the theorem implies that $\widetilde{\mathbf{G}}$ is the gradient of some function $\tilde{g} : R \to \mathbb{R}$. Recall that **F** is almost the gradient of θ , except that θ isn't a well-defined function on R. Similarly, **G** is almost the gradient of $\tilde{g} + c\theta$. On a simply connected subregion of R, **G** will be the gradient of $\tilde{q} + c\theta$, where θ is some extension of the usual θ to the subregion.

Note that this says that every vector field **G** on R that is curl-free and not a gradient can be made into a gradient simply by adding a constant multiple of the vector field **F** that is the main example,

$$
\mathbf{F} = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}.
$$

Thus the vector field **F** is, in some sense, the *only* example, at least on R.

The case of more holes

Now suppose that $R \subset \mathbb{R}^2$ is a region with finitely many holes. A hole can be more than just a point; can be the result of removing a simply connected set. In general, $R = R_0 \setminus (H_1 \cup \cdots \cup H_n)$ in which R_0 is a simply connected region, each H_i is a non-empty, closed set that is either a point or the closure of a simply connected region, and the sets H_1, \ldots, H_n are disjoint subsets of R_0 .

For each index i, let $P_i(x_i, y_i)$ be a point in H_i , and consider the vector field

$$
\mathbf{F}_i = \frac{-(y-y_i)}{(x-x_i)^2 + (y-y_i)^2}\mathbf{i} + \frac{x-x_i}{(x-x_i)^2 + (y-y_i)^2}\mathbf{j}.
$$

This is similar to the main example \mathbf{F} , but it is centered at P_i instead of the origin. If **r** denotes the position vector of a point X from the origin and r denotes the distance from X to the origin, note that **F** can be written as $\mathbf{F} = \mathbf{r}_{\perp}/r^2$. In the same way, let $\mathbf{r}_i = X - P_i$ be the position vector of X relative to P_i , and let $r = ||X - P_i|| = ||\mathbf{r}_i||$ be the distance from P_i to X. Then we have $\mathbf{F}_i = (\mathbf{r}_i)_{\perp}/r_i^2$.

If C is a simple, closed curve in R oriented counterclockwise, then $\oint_C \mathbf{F}_i \cdot d\mathbf{x}$ is equal to 2π or 0 depending on whether C goes around P_i or not. More generally, suppose that C is piecewise C^1 loop in R. It can be shown that $\frac{1}{2\pi} \oint_C \mathbf{F}_i \cdot d\mathbf{x}$ is an integer. It is called the winding number of C around P_i because it counts how many times C goes around P_i . Since C stays in R, this integer also counts the number of times C goes around H_i . The collection of integers, $\frac{1}{2\pi} \oint_C \mathbf{F}_i \cdot d\mathbf{x}$ for $1 \leq i \leq n$, gives considerable information about how the curve C makes its way around all of the holes in the region.

Exercise 7. Let $P_1(0,0)$, $P_2(1,0)$, $P_3(0,1)$, and let \mathbf{F}_1 , \mathbf{F}_2 , and \mathbf{F}_3 be the corresponding vector fields. Draw a closed curve C such that

$$
\frac{1}{2\pi} \oint_C \mathbf{F}_1 \cdot d\mathbf{x} = 2, \qquad \frac{1}{2\pi} \oint_C \mathbf{F}_2 \cdot d\mathbf{x} = 1, \qquad \text{and} \qquad \frac{1}{2\pi} \oint_C \mathbf{F}_3 \cdot d\mathbf{x} = -1.
$$

Exercise 8. Suppose P_1 is a point and \mathbf{F}_1 is the corresponding vector field. If C is a curve such that $\oint_C \mathbf{F}_1 \cdot d\mathbf{x} = 0$, it can be shown that C can be morphed to a point (a curve that

doesn't go anywhere) without passing through P_1 during the morphing process. (This is a substantial theorem. It says that no matter how crazy the curve C is, if $\oint_C \mathbf{F}_1 \cdot d\mathbf{x} = 0$, then C can be "unwound" from around P_1 .) Let $P_1(0, 0)$ and $P_2(1, 0)$, and let \mathbf{F}_1 and \mathbf{F}_2 be the corresponding vector fields. Draw a closed curve C such that

$$
\oint_C \mathbf{F}_1 \cdot d\mathbf{x} = \oint_C \mathbf{F}_2 \cdot d\mathbf{x} = 0
$$

for which it is intuitively clear that C *cannot* be morphed to a point without passing through at least one of the points.

Suppose **G** is a vector field on R with curl $\mathbf{G} = 0$. For each i, let C_i be a simple, closed curve in R, oriented counterclockwise, that goes around the hole H_i , but none of the other holes. Let $c_i = \oint_{C_i} \mathbf{F}_i \cdot d\mathbf{x}$, and define a new vector field by

$$
\widetilde{\mathbf{G}} = \mathbf{G} - \frac{1}{2\pi} \sum_{i=1}^{n} c_i \mathbf{F}_i.
$$

Then it can be shown that \tilde{G} is the gradient of some function on R. This implies that if curl $\mathbf{G} = 0$, then the only difference between **G** and a gradient is some linear combination of the vector fields $\mathbf{F}_1, \ldots, \mathbf{F}_n$.

Exercise 9. Let \tilde{G} be the vector field in the paragraph above. Prove that \tilde{G} is the gradient of some function on R. Do this by supposing that C is a piecewise C^1 , simple, closed curve in R, and giving a careful explanation of why $\oint_C \widetilde{\mathbf{G}} \cdot d\mathbf{x} = 0$.