
INFORMAL DERIVATIONS OF ARC-LENGTH FORMULAS

In class we saw that if γ : [a, b] → En is continuously differentiable, then its length is
given by

(1) �(γ) =
∫ b

a

‖γ′(t)‖ dt.

This formula can be found informally by computing with infinitesimals. For simplic-
ity we work with coordinates in E2, assuming γ(t) = (x(t), y(t)). If ds is length of an
infinitesimal part of the curve, the infinitesimal Pythagorean theorem gives us

ds2 = dx2 + dy2.

(Another way to think of this is that ds is the length of the infinitesimal displacement
vector dx i + dy j.) The length of the curve is �(γ) =

∫
C

ds, where
∫

C
means that we

integrate along the curve. We have

(2) �(γ) =
∫

C

ds =
∫

C

√
dx2 + dy2 =

∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt =
∫ b

a

√
x′(t)2 + y′(t)2 dt,

which is equal to the formula for �(γ) in (1) since γ′(t) = x′(t)i + y′(t)j.
Note that if the curve is the graph of y = f(x), a ≤ x ≤ b, where f is continuously

differentiable, a similar computation yields

�(γ) =
∫

C

ds =
∫

C

√
dx2 + dy2 =

∫ b

a

√
1 +

(
dy

dx

)2

dx =
∫ b

a

√
1 + f ′(t)2 dt,

which is the formula you learned for the length of a graph in Math 112. Note that this
can be obtained from (2) simply by letting t = x (x is the parameter!).

With some hindsight, we can derive (1) directly without coordinates. If γ represents a
point on the curve, then dγ represents an infinitesimal displacement vector from one point
on the curve to another point infinitesimally far away. The infinitesimal distance traveled
is ds = ‖dγ‖. (This looks a bit strange. In E2 we would have γ = (x, y), dγ = dx i + dy j
and ds = ‖dγ‖ =

√
dx2 + dy2.) Then

�(γ) =
∫

C

ds =
∫

C

‖dγ‖ =
∫ b

a

∥∥∥∥dγ

dt

∥∥∥∥ dt =
∫ b

a

‖γ′(t)‖ dt.



Polar Coordinates. Sometimes a curve in E2 is expressed in polar coordinates, either
with r as a function of θ, or parametrically with r and θ as functions of some other variable.
The formulas for arc-length in terms of r and θ can be derived by using the formulas that
relate polar and Cartesian coordinates:

x = r cos θ, y = r sin θ.

Taking differentials of these yields

dx = cos θ dr − r sin θ dθ, dy = sin θ dr + r cos θ dθ.

If you don’t remember how to take differentials from Math 112 (MVC Section 3) another
way to do this is to think of r and θ as functions of t (which we are implicitly doing anyway,
since we are moving along a curve) and differentiate with respect to t. We get

dx

dt
= cos θ

dr

dt
− r sin θ

dθ

dt
,

dy

dt
= sin θ

dr

dt
+ r cos θ

dθ

dt
.

Then multiply by dt.)
Now do the algebra. Square these expressions for dx and dy and add the results. We

get
ds2 = dx2 + dy2 = · · · = dr2 + r2 dθ2.

(You should fill in the details.) The length of the curve is then

�(γ) =
∫

C

ds =
∫

C

√
dr2 + r2 dθ2.

If r and θ are functions of t, a ≤ t ≤ b, we get

�(γ) =
∫ b

a

√(
dr

dt

)2

+ r2

(
dθ

dt

)2

dt =
∫ b

a

√
r′(t)2 + r2θ′(t)2 dt.

If r is a function of θ, α ≤ θ ≤ β, we get

�(γ) =
∫ β

α

√(
dr

dθ

)2

+ r2 dθ =
∫ β

α

√
r′(θ)2 + r(θ)2 dθ.

There are similar formulas for curves in E3 in terms of cylindrical and spherical coor-
dinates.

Historical Note. These informal derivations with infinitesimals are fairly close to how
these formulas were originally discovered. They are not rigorous, however, because we
haven’t given a rigorous definition of infinitesimals. They are intuitive, though, which is
why it’s worth learning and using them.
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