Math 223 Exam 3 N

25 April 2011

100 Points

You may use a calculator to do arithmetic, but not to solve systems or do matrix algebra. Exact answers are expected.

"Show enough work to justify your answers."

- 1. Do **one** of the following. Note that (a) has two parts. (20 points)
 - (a) Define $p_1, p_2 \in \mathcal{P}_1$ by $p_1(t) = t 1$ and $p_2(t) = 3t 1$. These form a basis for \mathcal{P}_1 (you do not need to prove this).
 - Show that p_1 and p_2 are orthogonal in the standard inner product of $\mathcal{C}^0([0,1])$.
 - Find the projection of $f(x) = t^2$ into \mathcal{P}_1 relative to this inner product.
 - (b) Let $V = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = (1, 0, 1)$ and $\mathbf{v}_2 = (1, 1, 0)$. Find the projection into V of $\mathbf{b} = (1, 1, 1)$. Warning: \mathbf{v}_1 and \mathbf{v}_2 are not orthogonal.
- 2. Do one of the following. (20 points)
 - (a) Let $f_1(t) = \sin 2t$, $f_2(t) = \cos 2t$, $f_3(t) = e^t$, and $f_4(t) = e^{2t}$. These form a basis for $V = \operatorname{span}\{f_1, f_2, f_3, f_4\}$. Define $T: V \to V$ by T(f) = f' - f. Find the matrix for T relative to the basis $\mathcal{B} = [f_1, f_2, f_3, f_4]$.
 - (b) Let S be the subspace of symmetric 2×2 matrices. A basis for S is $\mathcal{B} = [F_1, F_2, F_3]$, where

 $F_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad F_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \qquad F_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$

Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and define $T : \mathcal{S} \to \mathcal{S}$ by $T(X) = AX + XA^T$. Find the matrix of T relative to the basis \mathcal{B} .

- 3. Do two of the following. Note that (b) and (c) have two parts. (20 points each)
 - (a) Suppose that \mathbf{v}, \mathbf{w} are eigenvectors of the matrix A with eigenvalues of 3 and 5, respectively. Prove that \mathbf{v} and \mathbf{w} are independent.
 - (b) Prove that $f_1(t) = \sin 2t$, $f_2(t) = \cos 2t$, $f_3(t) = e^t$, and $f_4(t) = e^{2t}$ are independent.
 - Use a familiar trig identity to prove that $g_1(t) = \sin^2 t$, $g_2(t) = \cos^2 t$, and $g_3(t) = 1$ are dependent.
 - (c) Let $\mathbf{v}_1 = (1, 0, 1)$, $\mathbf{v}_2 = (1, 1, 0)$, and $\mathbf{v}_3 = (-1, 1, 1)$. Note that \mathbf{v}_3 is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 . Let $V = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be projection onto V.
 - Explain why the matrix for T relative to $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ is $[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. (5 points)
 - Find the matrix for *T* relative to the standard basis. (15 points) Note that $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix} = 3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

4. Find the volume of the parallelepiped determined by $\mathbf{a} = (2, 3, -2)$, $\mathbf{b} = (1, -3, 2)$, and $\mathbf{c} = (1, 1, 0)$. You may use any method you like to compute the determinant. (20 points)

Partial answers and hints.

- 1. (a) Note: The standard basis of \mathcal{P}_1 is not orthogonal for most inner products. The projection of t^2 is t 1/6.
 - (b) $\frac{2}{3}(2,1,1)$

2. (a)
$$[T]_{\mathcal{B}} = \begin{pmatrix} -1 & -2 & 0 & 0\\ 2 & -1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (b) The answer is a 3×3 matrix.
- 3. (b) To prove that the coefficients are zero requires four independent equations.
 - (c) The last sentence tells you the inverse of the new basis matrix. The matrix is $[T]_{\mathcal{E}} = \frac{1}{3} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$
- 4. Volume isn't negative!