Math 223	Exam 2	Name:			
30 Marc	100 Points				

You may use a calculator to do arithmetic, but exact answers are expected.

"Show enough work to justify your answers."

1. Consider the subspaces V and W, and the matrix A and its reduced form R. Note how the spanning sets for V and W are related to A. (15 points)

$$V = \operatorname{span}\{(-4, 11, -19, -6, 24), (1, -2, 4, 2, -7), (-2, 6, -10, -3, 12)\}$$
$$W = \operatorname{span}\{(-4, 1, -2), (11, -2, 6), (-19, 4, -10), (-6, 2, -3), (24, -7, 12)\}$$

A =	(-4)	11	-19	-6	24	$R = \left(\right)$	1	0	2	0	-3
A =	1	-2	4	2	-7	R =	0	1	-1	0	0
	$\sqrt{-2}$	6	-10	-3	12/	(0	0	0	1	-2/

- (a) Give a basis for V. (4 points)
- (b) Give a basis for W. (4 points)
- (c) Give a basis for N(A). (4 points)
- (d) Give the dimensions. (3 points)

 $\dim V = \qquad \qquad \dim W = \qquad \qquad \dim N(A) =$

- 2. Definitions. Do **two** of the following. If you do more than two, you will get credit for the best two. (10 points)
 - (a) Define what it means for a square matrix M to be skew-symmetric (or anti-symmetric).
 - (b) If V is a subspace of \mathbf{R}^n , define V^{\perp} .
 - (c) Define what it means for a collection $\mathbf{v}_1, \ldots \mathbf{v}_k$ in \mathbf{R}^n to be linearly independent.
- 3. Multiple Choice. For each of the following, state whether it *must* be true, *might* be true, or *can't* be true. (Circle one for each question.) (15 points)

(a) If $\mathbf{v}_1, \ldots \mathbf{v}_5$ are in \mathbf{R}^8 , then they are independent.	must	might	$\operatorname{can't}$			
(b) If $\mathbf{v}_1, \ldots \mathbf{v}_5$ are in \mathbf{R}^8 , then they span \mathbf{R}^8 .	must	might	can't			
(c) If $\mathbf{v}_1, \ldots \mathbf{v}_8$ are in \mathbf{R}^5 , then they are independent.	must	might	can't			
(d) If $\mathbf{v}_1, \ldots \mathbf{v}_8$ are in \mathbf{R}^5 , then they span \mathbf{R}^5 .	must	might	can't			
(e) If $\mathbf{v}_1, \ldots \mathbf{v}_8$ are in \mathbf{R}^8 and they are independent, then they span \mathbf{R}^8 .						

must might can't

- 4. Do any **two** of the following. If you do more than two, you will get credit for the best two. Use the back of the page if you need more room. (30 points)
 - (a) Use the definition of linear independence to determine if $\mathbf{v}_1 = (3, 2, -1, 1)$, $\mathbf{v}_2 = (2, 2, 1, 1)$, and $\mathbf{v}_3 = (1, 2, 3, 1)$ are linearly independent.
 - (b) Let $A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$. Reduce A to the identity, and use your steps to find a sequence of elementary matrices whose product is A^{-1} .
 - (c) Give an example of vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 in \mathbf{R}^3 such that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is independent, dent, $\{\mathbf{v}_1, \mathbf{v}_3\}$ is independent, and $\{\mathbf{v}_2, \mathbf{v}_3\}$ is independent, but $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is dependent. Explain.
 - (d) If A is a matrix, explain why the rows of A are in $N(A)^{\perp}$. You may not use $R(A) = N(A)^{\perp}$.
- 5. Proofs. Do any **two** of the following. If you do more than two, you will get credit for the best two. Use the back of the page if you need more room. (30 points)
 - (a) Suppose \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are non-zero vectors in \mathbf{R}^n that are orthogonal to each other. Prove that they are linearly independent. (Start with the equation we always use to determine independence and dot both sides with \mathbf{v}_1 .)
 - (b) Let $V = {\mathbf{x} \in \mathbf{R}^3 | x_1 x_2 + 2x_3 \leq 0}$. Prove that V is closed under vector addition and that V is not a subspace of \mathbf{R}^3 .
 - (c) Suppose A is a symmetric matrix, and that \mathbf{v} and \mathbf{w} are vectors such that $A\mathbf{v} = 2\mathbf{v}$ and $A\mathbf{w} = 3\mathbf{w}$. Prove that \mathbf{v} and \mathbf{w} are orthogonal.
 - (d) Let A and B be $k \times \ell$ matrices. Prove that $V = {\mathbf{x} \in \mathbf{R}^{\ell} | A\mathbf{x} = B\mathbf{x}}$ is a subspace of \mathbf{R}^{ℓ} .
 - (e) Suppose V and W are subspaces of \mathbb{R}^n such that $W \subset V$. Prove that $V^{\perp} \subset W^{\perp}$.

Partial answers and hints.

- 1. (a) The rows of R.
 - (b) The first, second, and fourth columns of A (the pivot columns).
 - (c) (-2, 1, 1, 0, 0) and (3, 0, 0, 2, 1) form a basis.
 - (d) 3, 3, 2
- 3. Five independent vectors need at least five dimensions. An eight dimensional space needs at least eight vectors to span it.
- 4. (a) You only need to reduce the matrix far enough to see if there will be free variables.(b) Remember to reverse the order of the elementary matrices for the inverse.