Math 223 Exam 1 Nat

18 February 2011

100 Points

You may use a calculator to do arithmetic, but exact answers are expected. "Show enough work to justify your answers."

1. (a) Let A be the matrix below. Compute A^{-1} . (15 points)

$$A = \begin{pmatrix} 2 & -3 & 6\\ 1 & -1 & 2\\ 2 & -2 & 3 \end{pmatrix}$$

(b) Use the result of part (a) to solve the following system, or use any other method.(5 points)

2. A matrix and its reduced echelon form are given.

2	-1	-6	5	2	(1	0	-3	2	0)
1	1	-3	1	1	0	1	0	-1	0
$\sqrt{3}$	2	-9	4	0/	$\int 0$	0	$\begin{array}{c} -3 \\ 0 \\ 0 \end{array}$	0	1/

Given these, what are the solutions of the following systems? Write the solutions in vector form, and as a parameterized line or plane if appropriate. (15 points)

	$2x_1$	_	x_2	_	$6x_3$	+	$5x_4$	=	2		
(a)	x_1	+	x_2	—	$3x_3$	+	x_4	=	1		
	$3x_1$	+	$2x_2$	—	$9x_3$	+	$4x_4$	=	0		
	$2x_1$	—	x_2	—	$6x_3$	+	$5x_4$	+	$2x_5$	=	0
(b)			$\begin{array}{c} x_2 \\ x_2 \end{array}$		-				-		

- 3. Short answers. Do **any four** of the following. If you do more than four, you will get credit for the best four. (20 points)
 - (a) Suppose A is a 25×35 matrix and B is a 35×25 matrix. What are the dimensions of AB and BA?
 - (b) If A is a matrix, what is meant by the rank of A?
 - (c) If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{w} are vectors in the same \mathbf{R}^n , what does it mean for \mathbf{w} to be a linear combination of \mathbf{v}_1 and \mathbf{v}_2 ?
 - (d) Show that $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ is an eigenvector of $\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ and determine the corresponding eigenvalue.
 - (e) Explain why a homogeneous system is never inconsistent.
 - (f) Explain why a linear system cannot have exactly two solutions.

- 4. Do **any three** of the following. If you work on more than three, you will get credit for the best three. Continue on the back if you need more room. (45 points)
 - (a) Given $\triangle ABC$, let E and F be the midpoints of sides \overline{AB} and \overline{AC} , respectively. Use vectors to prove that \overline{EF} is parallel to and half the length of \overline{BC} .
 - (b) Consider the two lines in \mathbf{R}^3 given parametrically as

(x, y, z) = (0, 5, 7) + t(1, -2, -2) and (x, y, z) = (4, 4, 4) + t(2, 3, 1).

Find their point of intersection or prove that they don't intersect.

- (c) Find the point on the plane 3x 2y + 4z = 0 that is closest to the point (8, -3, 7).
- (d) Show that f(x) = 3x + 2 is not linear in the Math 223 sense.
- (e) Suppose \mathbf{x} and \mathbf{y} are vectors such that $||\mathbf{x}|| = ||\mathbf{y}||$. Prove that $\mathbf{x} + \mathbf{y}$ bisects the angle between \mathbf{x} and \mathbf{y} .

Partial answers and hints.

- 1. Check by multiplication and by plugging in.
- 2. (a) No solutions.
 - (b) $(x_1, x_2, x_3, x_4, x_5) = s(3, 0, 1, 0, 0) + t(-2, 1, 0, 1, 0)$ Note: You can partially check your solution by plugging in. The vectors (3, 0, 1, 0, 0) and (-2, 1, 0, 1, 0) should individually be solutions since the system is homogeneous. What this won't catch is too few free variables.
- 4. (b) They intersect at (2, 1, 3).
 - (c) (2, 1, -1)