Math223Exam 3Name:14 April 2008100 PointsNo calculators or Mathematica, except as indicated."Show enough work to justify your answers."

READ CAREFULLY. This exam has two parts. Read the instructions for each part. **Part I.** Do all problems in this part.

- 1. (15 points) Consider the matrix $A = \begin{pmatrix} 8 & -2 & -28 & -5 & 2 \\ 5 & -2 & -19 & -3 & -1 \\ -13 & 4 & 47 & 10 & 11 \end{pmatrix}$. Its reduced row echelon form is $\begin{pmatrix} 1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{pmatrix}$.
 - (a) The linear function μ_A has domain \mathbf{R}^k and range \mathbf{R}^{ℓ} , that is, $\mu_A : \mathbf{R}^k \to \mathbf{R}^{\ell}$. What are the values of k and ℓ ?
 - (b) Find a basis for $\ker(\mu_A)$.
 - (c) Find a basis for the column space of A (this is the same as the image of μ_A) consisting of some of the columns of A.
- 2. Short Answers. (15 points)
 - (a) State what it means for a function $f: X \to Y$ to be one-to-one. (Note: f is not assumed to be linear.)
 - (b) If V and W are vector spaces, state what it means for a function $T: V \to W$ to be linear.
 - (c) Let $D : \mathbb{P}_3 \to \mathbb{P}_3$ denote differentiation. What is the image of D? (Don't give the definition of the image of a general transformation. Rather, specify what the image is of this particular transformation. One way to do this is to say what functions are in the image of D.)
- 3. Let $\mathbf{v} = (3, 4)$. Define $T : \mathbf{R}^2 \to \mathbf{R}^2$ by $T(\mathbf{x}) = \mathbf{x} 2 \operatorname{Proj}_{\mathbf{v}} \mathbf{x}$. This is linear (you may assume this). Find the matrix for T relative to the standard basis. (10 points)

Part II. Do **any four** of the problems in this part. If you work on more than four, you will get credit for the best four. (15 points each)

- 4. Suppose $T: V \to W$ is linear. Suppose that $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is an independent subset of W. Prove that $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is an independent subset of V.
- 5. Consider the function $T : \mathbb{P}_2 \to \mathbb{R}^2$ given by $T(p) = \left(p(2) 2p'(1), \int_0^1 p(x) dx\right)$. This is linear (you may assume this). Find the matrix for T relative to the bases $\{x^2, x, 1\}$ for \mathbb{P}_2 and $\{(1,0), (0,1)\}$ for \mathbb{R}^2 .
- 6. Let $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2}$, where $\mathbf{v}_1 = (1, 5)$ and $\mathbf{v}_2 = (0, 7)$, and let $\tilde{\mathcal{B}} = {\mathbf{u}_1, \mathbf{u}_2}$, where $\mathbf{u}_1 = (2, 3)$ and $\mathbf{u}_2 = (-1, 2)$. These are ordered bases for \mathbf{R}^2 .
 - (a) Compute the matrix $C_{\mathcal{B}\tilde{\mathcal{B}}}$ that converts coordinates relative to \mathcal{B} into coordinates relative to $\tilde{\mathcal{B}}$. (10 points)
 - (b) Let $\mathbf{w} = 8\mathbf{v}_1 11\mathbf{v}_2$. Use the matrix $C_{\mathcal{B}\tilde{\mathcal{B}}}$ to compute the coordinates of \mathbf{w} relative to $\tilde{\mathcal{B}}$. (5 points)
- 7. Suppose $T: V \to V$ is linear. An eigenvector of T is a non-zero vector $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \lambda \mathbf{v}$ for some scalar $\lambda \in \mathbf{R}$. The number λ is called the eigenvalue of T corresponding to \mathbf{v} . For example, let V be the vector space of functions that can be differentiated infinitely many times, and consider $D: V \to V$ given by D(f) = f'. Then $f(x) = e^{-x}$ is an eigenvector of D with eigenvalue -1 because D(f) = -f. Find two more functions g and h that are eigenvectors of D such that f, g, and h are linearly independent, and give their eigenvalues. You do not need to prove that they are independent (but you should be sure that they are).
- 8. Let $\mathbf{v} \in \mathbf{R}^n$ be a fixed vector. Define $T : \mathbf{R}^n \to \mathbf{R}^n$ by $T(\mathbf{x}) = \mathbf{x} 2 \operatorname{Proj}_{\mathbf{v}} \mathbf{x}$. Prove that T is linear. Do not assume that \mathbf{v} is the vector in Problem 2.
- 9. Use the notions of rank and nullity of a linear function to explain the following:
 - (a) Why a linear function $T: \mathbf{R}^3 \to \mathbf{R}^5$ cannot be onto, and
 - (b) Why a linear function $L: \mathbf{R}^3 \to \mathbf{R}^2$ cannot be one-to-one.