Math 223
 Exam 2
 Name:

 20 March 2008
 100 Points

20 March 2008 100 Points No calculators or *Mathematica*, except as indicated. *"Show enough work to justify your answers."*

READ CAREFULLY. This exam has three parts. Read the instructions for each part.

Part I. Do all three problems in this part. (10 points each)

- 1. Suppose $\mathbf{v}_1 = (2, -1)$ and $\mathbf{v}_2 = (3, 4)$. Find a vector \mathbf{w} in \mathbf{R}^2 such that $\mathbf{w} \cdot \mathbf{v}_1 = 2$ and $\mathbf{w} \cdot \mathbf{v}_2 = -3$, find \mathbf{w} . Hint: Write \mathbf{w} as $\mathbf{w} = (a, b)$ and use dot products to get information about a and b.
- 2. Let $\mathbf{v} = (-4, 2)$ and $\mathbf{w} = (3, 1)$. Find vectors \mathbf{v}_1 , \mathbf{v}_2 such that $\mathbf{w} = \mathbf{v}_1 + \mathbf{v}_2$, \mathbf{v}_1 is parallel to \mathbf{v} , and \mathbf{v}_2 is perpendicular to \mathbf{v} .
- 3. The vectors $\mathbf{v}_1 = (1, 1, 1)$ and $\mathbf{v}_2 = (5, 0, 2)$ form an ordered basis for the subspace of \mathbf{R}^3 given by 2x + 3y 5z = 0 (you do not need to verify this).
 - (a) Given that $\mathbf{w} = (7, -3, 1)$ is in that plane (you do not need to verify this), find the coordinates of \mathbf{w} relative to this basis.
 - (b) Find the vector in this subspace with coordinates $\begin{pmatrix} 1\\ 3 \end{pmatrix}$.

Part II. Do **any two** of the problems in this part. If you work on more than two, you will get credit for the best two. (15 points each)

4. Given $A = \begin{pmatrix} 1 & 2 & 1 & -2 & -1 \\ 2 & 4 & 3 & 4 & 3 \end{pmatrix}$, we know that the set of solutions of $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbf{R}^5 . Our solution process leads to the solutions being written as

$$(x_1, x_2, x_3, x_4, x_5) = r(-2, 1, 0, 0, 0) + s(10, 0, -8, 1, 0) + t(6, 0, -5, 0, 1).$$

Prove that the vectors $\mathbf{v}_1 = (-2, 1, 0, 0, 0)$, $\mathbf{v}_2 = (10, 0, -8, 1, 0)$, and $\mathbf{v}_3 = (6, 0, -5, 0, 1)$ form a basis for the subspace.

- 5. Given $A = \begin{pmatrix} 3 & 2 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -2 \\ 3 & 1 \\ 2 & 0 \end{pmatrix}$, show that AB is a linear combination of the rows of B.
- 6. Let f(x) = x and $g(x) = -x^2$. Find the "angle" between f and g relative to the standard inner product on C([0, 2]). Give the exact value of the cosine of the angle, and use a calculator to give an approximation for the angle in degrees or radians (indicate which).
- 7. Let $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Find three independent eigenvectors of A and their eigenvalues. You should demonstrate that they are eigenvectors, but you do not need to prove that they are independent.

Part III. Do **any two** of the problems in this part. If you work on more than two, you will get credit for the best two. (20 points each)

- 8. Let $\mathbf{v}_1 = (5, -2, 3), \mathbf{v}_2 = (-1, 3, 2), \mathbf{v}_3 = (7, 5, 12).$
 - (a) Show that \mathbf{v}_1 , \mathbf{v}_2 are independent, that \mathbf{v}_1 , \mathbf{v}_2 are independent, and that \mathbf{v}_2 , \mathbf{v}_3 are independent.
 - (b) Are \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 dependent?
 - (c) Do \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 span \mathbf{R}^3 ? Explain.
- 9. Let $V = \{p \in \mathbb{P}_4 \mid p'(3) = 0\}$. Let $p_1(x) = 1$, $p_2(x) = (x-3)^2$, $p_3(x) = (x-3)^3$, $p_4(x) = (x-3)^4$.
 - (a) Show that p_1, p_2, p_3, p_4 are all in V, and find something in \mathbb{P}_4 that is not in V.
 - (b) Show that p_1, p_2, p_3, p_4 are linearly independent.
 - (c) Explain why dim V > 3 and dim V < 5.
 - (d) Do p_1 , p_2 , p_3 , p_4 span V? Explain.
- 10. Suppose that A is an $n \times n$ matrix, and that **v** and **w** are eigenvectors of A with eigenvalue 5.
 - (a) Show that $\mathbf{v} + \mathbf{w}$ is an eigenvector of A with eigenvalue 5, assuming $\mathbf{v} + \mathbf{w} \neq \mathbf{0}$.
 - (b) If a is a scalar, show that $a\mathbf{v}$ is an eigenvector of A with eigenvalue 5, assuming $a \neq 0$.

(Note that these prove that the eigenvectors of A with eigenvalue 5, along with the zero vector, form a subspace of \mathbf{R}^{n} .)

11. Let
$$A = \begin{pmatrix} 5 & -4 \\ 2 & -1 \end{pmatrix}$$
. Find all eigenvectors of A with eigenvalue 3.