\heartsuit 14 February 2008 \heartsuit

100 Points

No Mathematica. You may use a calculator to do arithmetic, but exact answers are expected. "Show enough work to justify your answers."

1. Given A below, compute A^{-1} or determine that A^{-1} does not exist. (15 points)

$$A = \begin{pmatrix} -1 & 2 & -2\\ 1 & -3 & 2\\ -2 & 6 & -3 \end{pmatrix}$$

2. A matrix and its reduced echelon form are given.

(-4)	11	-19	-6	24	(1	0	2	0	-3
1	-2	4	2	-7	0	1	-1	0	0
$\sqrt{-2}$	6	-10	-3	12/	$\sqrt{0}$	0	0	1	$\begin{pmatrix} -3\\ 0\\ -2 \end{pmatrix}$

Given these, what are the solutions of the following systems? Write the solutions in vector form, and as a parameterized line or plane if appropriate. (10 points)

	$-4x_1$	+	$11x_{2}$	_	$19x_{3}$	_	$6x_4$	+	$24x_{5}$	=	0
(a)	x_1	—	$2x_2$	+	$4x_3$	+	$2x_4$	—	$7x_{5}$	=	0
	$-2x_1$	+	$6x_{2}$	—	$10x_{3}$	—	$3x_4$	+	$12x_{5}$	=	0
					10		0		24		
	$-4x_1$	+	$11x_2$	_	$19x_{3}$	_	$6x_4$	=	24		
(b)	x_1	—	$2x_2$	+	$4x_3$	+	$2x_4$	=	-7		
	$-2x_{1}$	+	$6x_2$	_	$10x_{3}$	_	$3x_4$	=	12		

- 3. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix}$, and $C = \begin{pmatrix} 5 & 3 \\ 0 & 7 \end{pmatrix}$. Find scalars *a* and *b* such that aA + bB = C, or explain why no such scalars exist. (10 points)
- 4. Consider the following system, in which the constants on the right sides are unspecified. The reduced echelon form of the coefficient matrix (not the augmented matrix) is given.

3x	+	8y	+	6z	=	a	1	0	2
x	+	3y	+	2z	=	b	0	1	0
5x	+	13y	+	10z	=	С	$\left(0 \right)$	0	$\begin{pmatrix} 2\\ 0\\ 0 \end{pmatrix}$

Answer the following. (15 points)

- (a) Is it possible that the system has no solutions? Briefly explain. (Consider what the reduced augmented matrix might look like.)
- (b) Is it possible that the system has exactly one solution? Briefly explain.
- (c) Is it possible that the system has infinitely many solutions? Briefly explain.

- 5. Short answers. (20 points)
 - (a) Suppose A is a 20×30 matrix and B is a 50×20 matrix. Determine which product is defined, AB or BA, and what its dimensions are.
 - (b) Suppose S is a subset of a vector space V. Define what it means for S to be closed under scalar multiplication.
 - (c) Given pictures of \mathbf{v} and \mathbf{w} , draw pictures of $\mathbf{v} + \mathbf{w}$ and $\mathbf{v} \mathbf{w}$. Draw accurately. Use a straightegde if necessary.

 $\mathbf{v} - \mathbf{w}$

 $\mathbf{v} + \mathbf{w}$

(d) Let $A = \begin{pmatrix} 1 & -1 \\ 3 & -2 \end{pmatrix}$, and $B = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}$. Compute AB and BA. (Note that the two products are not equal.) (5 points)

AB =

BA =

- 6. Do any **three** of the following proofs. If you work on more than three, you will get credit for the best three. Continue on the next page if you need more room. (30 points)
 - (a) Suppose V is a vector space, and that S and T are subspaces of V. Prove that $S \cap T$ is a subspace of V.
 - (b) Suppose A is a 6×8 matrix. Then the equation $A\mathbf{x} = \mathbf{0}$ is possible if $\mathbf{x} \in \mathbf{R}^8$ and $\mathbf{0} \in \mathbf{R}^6$ are viewed as column matrices. Let $S = {\mathbf{x} \in \mathbf{R}^8 \mid A\mathbf{x} = \mathbf{0}}$. Prove that S is a subspace of \mathbf{R}^8 .
 - (c) Suppose A is an $n \times k$ matrix. Prove that the rank of A is less than or equal to both n and k.
 - (d) Let $S = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ and } y \ge 0\}$. Determine, with proof, if S is a subspace.
 - (e) Give a careful proof using the axioms: If $-\mathbf{v} = \mathbf{0}$, then $\mathbf{v} = \mathbf{0}$. Justify each step (refer to the axioms by number). The axioms are on the next page.