1 May 2001

200 Points

"Show enough work to justify your answers."

You may use *Mathematica* wherever it is useful, **however**, if its use is essential to your solution, you **must** be very clear how you use it and how you draw conclusions from its results.

- 1. Definitions. (5 points each)
 - a) Define what it means for vectors \mathbf{v} and \mathbf{w} to be orthogonal in an inner product space V.
 - b) Define what it means for λ to be an eigenvalue for a square matrix A.
 - c) Define what the dimension of a vector space V is.
 - d) Define what the kernel is of a linear function $L: V \to W$.
- 2. Determine if $x^2 + 3x 7$, $5x^2 4x + 2$, 3x + 2, and $2x^2 + 7x$ are linearly independent. (15 points)
- 3. Consider the polynomials x 1 and x + 3 in \mathbb{P}_1 .
 - a) Prove that these polynomials form a basis of \mathbb{P}_1 . (10 points)
 - b) Find the coordinates of 2x 7 relative to this basis. (10 points)
- 4. Consider the following matrix A and its reduced form.

	(2)	7	12	30		/1	0	-1	1
A =	4	5	6	24	,	0	1	2	4
	$\backslash 1$	2	3	9 /		0 /	0	0	0/

- a) Find all solutions of the following system. Express your answer in parametric form. (10 points)
- b) Find all solutions of the following system. Express your answer in parametric form. (10 points)

2x	+	7y	+	12z	+	30w	=	0
4x	+	5y	+	6z	+	24w	=	0
x	+	2y	+	3z	+	9w	=	0

- c) Find a basis for the row space of A. (5 points)
- d) Find a basis for the column space of A. (5 points)
- e) Find a basis for the kernel of μ_A . (5 points)
- 5. Determine, with proof, which of the following are vector spaces under the usual definitions of addition and scalar multiplication. (10 points each)
 - a) The solutions of the system of equations in part a) of the previous problem.
 - b) The set of all functions f in $\mathbb{C}(\mathbb{R})$ such that $\int_0^2 f(x) \, dx = 0$.

Page 2

- 6. If A and B are square matrices of the same size, consider the statements $(AB)^t = A^t B^t$ and $(AB)^t = B^t A^t$. One of these statements is an identity (true for all A and B) and the other is not. For the one that is not an identity, give two examples using 2×2 matrices so that the equation holds for one example but not for the other. (15 points)
- 7. Let V be the span of $\{1, \sin x, \cos x, \sin 2x, \cos 2x\}$. These functions are linearly independent (you don't need to prove this), and so they form a basis for V. Define $D: V \to V$ by D(f) = f'. Find the matrix of D relative to this basis. (15 points)

READ THIS !! Do any **three** of the remaining problems. If you work on more than three, you will get credit for the best three. Please do each problem on a separate sheet of paper. Write the problem number in the upper right corner of the page and avoid writing anything in the upper left corner. (20 points each)

- 8. Let V be span{1, sin x, cos x, sin 2x, cos 2x}. As in the previous problem, these functions form a basis for V. They are also orthogonal relative to the standard inner product on $\mathbb{C}([-\pi,\pi])$ (you don't need to prove this), however they are not orthonormal. Find the projection of $f(x) = x^3 9x$ onto V. Write your answer as a linear combination of the basis functions with simplified coefficients.
- 9. Let U be the subspace of \mathbb{R}^3 spanned by (1,2,3) and (2,-1,0). Let V be the subspace of \mathbb{R}^3 spanned by (5,0,3) and (0,5,6). Are U and V the same? Why or why not?
- 10. Give an example of a function $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ that is not linear and prove that it is not linear.
- 11. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ is linear. Find the general formula for $T\begin{pmatrix} x \\ y \end{pmatrix}$ given that

$$T\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 5\\-3\\-1 \end{pmatrix}$$
 and $T\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} -1\\-3\\2 \end{pmatrix}$.

12. Find the eigenvalues of $\begin{pmatrix} -2 & 2 \\ -2 & 3 \end{pmatrix}$. For each eigenvalue, find a corresponding eigenvector.

Now, go home and don't think about mathematics for a few months! (∞ points)