Math 23	$\mathbf{Exam} \ 3$	Name:

25 November 1997

100 Points

No *Mathematica*. You may use a calculator to do arithmetic, but exact answers are expected.

"Show enough work to justify your answers."

READ CAREFULLY! There are nine problems. Do any **six** of them. If you work on more than six you will get credit for the best six. I suggest reading through the entire exam before you start on any of the problems. The problems are worth 15 points each, and 10 points are free!

- 1. Let p(x) = 2x 3 and $q(x) = x^2$. Compute $\operatorname{Proj}_p q$, the projection of q in the direction of p, relative to the inner product $\langle f, g \rangle = \int_{-2}^{2} f(x)g(x) dx$.
- 2. Suppose that $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are orthonormal vectors in \mathbb{R}^n , and that \mathbf{v} is a linear combination of them, namely, $\mathbf{v} = a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k$. Prove that the coefficient a_j is $\mathbf{v} \cdot \mathbf{u}_j$.
- 3. The vectors

$$\mathbf{u}_1 = (1/5, 2/5, 2/5, 4/5), \quad \mathbf{u}_2 = (-2/5, 1/5, -4/5, 2/5), \\ \mathbf{u}_3 = (-4/5, 2/5, 2/5, -1/5), \quad \mathbf{u}_4 = (2/5, 4/5, -1/5, -2/5)$$

form an orthonormal basis of \mathbb{R}^4 .

- (a) Verify that \mathbf{u}_1 and \mathbf{u}_2 are orthonormal. (5 points)
- (b) Let $V = \operatorname{span}(\mathbf{u}_1, \mathbf{u}_2)$ and $W = \operatorname{span}(\mathbf{u}_3, \mathbf{u}_4)$. Find the matrix P (with respect to the standard basis) of orthogonal projection from \mathbb{R}^4 to V. (10 points)
- (c) **Extra Credit.** Without computing it, explain why the matrix Q of orthogonal projection from \mathbb{R}^4 to W should be I-P, where I is the identity matrix. (5 points)
- 4. The picture shows the graphs of the sine function and the closest polynomial in \mathcal{P}_2 relative to the inner product $\langle f, g \rangle = \int_{-\pi/2}^{\pi/2} f(x)g(x) dx$. Add to the picture the graph (approximately) of the polynomial in \mathcal{P}_2 closest to the sine function relative to the inner product $\langle f, g \rangle = \int_{\pi/2}^{3\pi/2} f(x)g(x) dx$. (Don't compute this, just eyeball it!) Explain in your own words why these two "closest lines" are different. In what sense are they closest?

Note: \mathcal{P}_2 is the vector space of polynomials of degree strictly less than 2.

- 5. An orthogonal matrix is a square matrix A such that $A^{-1} = A^T$. Prove that an $n \times n$ matrix is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^n . Hint: Think about the product $A^T A$ and about how matrix multiplication and dot products are related.
- 6. Suppose A is a matrix. Explain why $\operatorname{RowSpace}(A)$ and $\operatorname{null}(A)$ are orthogonal. Note: $\operatorname{null}(A)$ is another notation for $\ker(A)$.
- 7. Let A be the following matrix. Its row reduced form E is also shown.

	(3	-5	16	-4		/1	0	2	2
A =	2	7	-10	18	\overline{L}	0	1	-2	2
	1	2	-2	6	$E \equiv$	0	0	0	0
	$\backslash 2$	-1	6	$2 \int$		$\left(0 \right)$	0	0	0/

- (a) Find an orthonormal basis \mathcal{B} of \mathbb{R}^4 so that the first vectors of \mathcal{B} are a basis for RowSpace(A), and and the last vectors of \mathcal{B} are a basis for null(A). (Note that these subspaces are orthogonal by the previous problem.)
- (b) Let $\mathbf{v} = (1, 2, 2, 1)$. Decompose \mathbf{v} into the sum of two vectors, one of which is in RowSpace(A) and the other of which is in null(A). That is, find vectors $\mathbf{w}_1 \in \text{RowSpace}(A)$ and $\mathbf{w}_2 \in \text{null}(A)$ so that $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$.
- 8. Let v = (1, 1). (5 points each)
 - (a) Find a non-zero vector \mathbf{w} in \mathbb{R}^2 that is orthogonal to \mathbf{v} relative to the standard inner product. Draw both vectors on the same graph.
 - (b) For $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$ in \mathbb{R}^2 , the formula $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 4 x_2 y_2$ is an inner product on \mathbb{R}^2 (you don't need to verify this). What is the angle (approximately, in degrees) between \mathbf{v} and \mathbf{w} relative to this inner product?
 - (c) Find a non-zero vector \mathbf{u} in \mathbb{R}^2 that is orthogonal to \mathbf{v} relative to this non-standard inner product. Add \mathbf{u} to the graph with the other two vectors.
- 9. Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$, where $\mathbf{v}_1 = (1, 5)$ and $\mathbf{v}_2 = (0, 7)$, and let $\tilde{\mathcal{B}} = [\mathbf{u}_1, \mathbf{u}_2]$, where $\mathbf{u}_1 = (2, 3)$ and $\mathbf{u}_2 = (-1, 2)$.
 - Note: $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$ is notation for an ordered basis.
 - (a) Compute the matrix $C_{\mathcal{B}\tilde{\mathcal{B}}}$ that converts coordinates relative to \mathcal{B} into coordinates relative to $\tilde{\mathcal{B}}$. (10 points)
 - (b) Let $\mathbf{w} = 8\mathbf{v}_1 11\mathbf{v}_2$. Use the matrix $C_{\mathcal{B}\mathcal{B}}$ to compute the coordinates of \mathbf{w} relative to \mathcal{B} . (5 points)