Math 23 Exam 3 Name:

25 November 1997 100 Points

No *Mathematica*. You may use a calculator to do arithmetic, but exact answers are expected.
"Show enough work to justify your answers."

"Show enough work to justify your answers."

READ CAREFULLY! There are nine problems. Do any **six** of them. If you work on more than six you will get credit for the best six. I suggest reading through the entire exam before you start on any of the problems. The problems are worth 15 points each, and 10 points are free!

- 1. Let $p(x) = 2x 3$ and $q(x) = x^2$. Compute Proj_pq, the projection of q in the direction of *p*, relative to the inner product $\langle f, g \rangle = \int_{-2}^{2} f(x)g(x) dx$.
- 2. Suppose that $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are orthonormal vectors in \mathbb{R}^n , and that **v** is a linear combination of them, namely, $\mathbf{v} = a_1 \mathbf{u}_1 + \cdots + a_k \mathbf{u}_k$. Prove that the coefficient a_j is $\mathbf{v} \cdot \mathbf{u}_j$.
- 3. The vectors

$$
\mathbf{u}_1 = (1/5, 2/5, 2/5, 4/5), \qquad \mathbf{u}_2 = (-2/5, 1/5, -4/5, 2/5),
$$

$$
\mathbf{u}_3 = (-4/5, 2/5, 2/5, -1/5), \qquad \mathbf{u}_4 = (2/5, 4/5, -1/5, -2/5)
$$

form an orthonormal basis of \mathbb{R}^4 .

- (a) Verify that \mathbf{u}_1 and \mathbf{u}_2 are orthonormal. (5 points)
- (b) Let $V = \text{span}(\mathbf{u}_1, \mathbf{u}_2)$ and $W = \text{span}(\mathbf{u}_3, \mathbf{u}_4)$. Find the matrix P (with respect to the standard basis) of orthogonal projection from \mathbb{R}^4 to *V*. (10 points)
- (c) **Extra Credit.** Without computing it, explain why the matrix *Q* of orthogonal projection from \mathbb{R}^4 to *W* should be *I*−*P*, where *I* is the identity matrix. (5 points)
- 4. The picture shows the graphs of the sine function and the closest polynomial in \mathcal{P}_2 relative to the inner product $\langle f, g \rangle = \int_{-\pi/2}^{\pi/2} f(x)g(x) dx$. Add to the picture the graph (approximately) of the polynomial in \mathcal{P}_2 closest to the sine function relative to the inner product $\langle f, g \rangle = \int_{\pi/2}^{3\pi/2} f(x)g(x) dx$. (Don't compute this, just eyeball it!) Explain in your own words why these two "closest lines" are different. In what sense are they closest?

Note: \mathcal{P}_2 is the vector space of polynomials of degree strictly less than 2.

- 5. An *orthogonal matrix* is a square matrix *A* such that $A^{-1} = A^T$. Prove that an $n \times n$ matrix is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^n . Hint: Think about the product A^TA and about how matrix multiplication and dot products are related.
- 6. Suppose *A* is a matrix. Explain why RowSpace(*A*) and null(*A*) are orthogonal. Note: $null(A)$ is another notation for $ker(A)$.
- 7. Let *A* be the following matrix. Its row reduced form *E* is also shown.

- (a) Find an orthonormal basis \mathcal{B} of \mathbb{R}^4 so that the first vectors of \mathcal{B} are a basis for RowSpace(*A*), and and the last vectors of \mathcal{B} are a basis for null(*A*). (Note that these subspaces are orthogonal by the previous problem.)
- (b) Let $\mathbf{v} = (1, 2, 2, 1)$. Decompose **v** into the sum of two vectors, one of which is in $RowSpace(A)$ and the other of which is in $null(A)$. That is, find vectors **w**₁ ∈ RowSpace(*A*) and **w**₂ ∈ null(*A*) so that **v** = **w**₁ + **w**₂.
- 8. Let $v = (1, 1)$. (5 points each)
	- (a) Find a non-zero vector **w** in \mathbb{R}^2 that is orthogonal to **v** relative to the standard inner product. Draw both vectors on the same graph.
	- (b) For $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$ in \mathbb{R}^2 , the formula $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 4 x_2 y_2$ is an inner product on \mathbb{R}^2 (you don't need to verify this). What is the angle (approximately, in degrees) between **v** and **w** relative to this inner product?
	- (c) Find a non-zero vector **u** in \mathbb{R}^2 that is orthogonal to **v** relative to this non-standard inner product. Add **u** to the graph with the other two vectors.
- 9. Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$, where $\mathbf{v}_1 = (1, 5)$ and $\mathbf{v}_2 = (0, 7)$, and let $\tilde{\mathcal{B}} = [\mathbf{u}_1, \mathbf{u}_2]$, where $u_1 = (2, 3)$ and $u_2 = (-1, 2)$.
	- Note: $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$ is notation for an ordered basis.
	- (a) Compute the matrix $C_{\beta\beta}$ that converts coordinates relative to β into coordinates relative to β . (10 points)
	- (b) Let $\mathbf{w} = 8\mathbf{v}_1 11\mathbf{v}_2$. Use the matrix $C_{\beta\beta}$ to compute the coordinates of \mathbf{w} relative to β . (5 points)