Math 23 Exam 2	Name:
----------------	-------

28 October 1997

100 Points

No Mathematica. You may use a calculator to do arithmetic, but exact answers are expected. "Show enough work to justify your answers."

All problems are worth 10 points.

- 1. Suppose $A\mathbf{x} = \mathbf{b}$ is a consistent system of equations. What is the relationship between the number of free variables in this system and dim N(A)? Explain.
- 2. A matrix A and its echelon reduced form U are given. Based on this, find a basis for the null space of A.

A =	$\binom{3}{2}$	-1 1	0	2	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$		$\binom{1}{0}$	0	$\frac{2}{5}$	$\frac{1}{5}$	$\begin{pmatrix} 1/5 \\ -2/5 \\ 0 \\ 0 \end{pmatrix}$
	$\frac{2}{5}$	$1 \\ 0$	2 2	-1 1	$\begin{array}{c} 0\\ 1\end{array}$	U =	$\begin{bmatrix} 0\\0 \end{bmatrix}$	$\frac{1}{0}$	$\frac{6}{5}$	-7/5	$\frac{-2}{5}$
	$\backslash 1$	-2	-2	3	$1 \Big)$		$\int 0$	0	0	0	0 /

- 3. Let V be the vector space of functions that satisfy f'' + f = 0. We have seen that $\mathcal{B} = [S, C]$ form a basis for V, where $S(x) = \sin x$ and $C(x) = \cos x$. Define $D: V \to V$ by D(f) = f'. Write the matrix for D relative to the basis \mathcal{B} . (Note: The same basis is used for both domain and range.)
- 4. Let V be the span of (2, -1, 0, 3, -2), (-1, 3, 2, 0, 1), (5, 0, 2, 9, -5), and (3, -2, 4, 1, 1). Determine some collection of these vectors that form a basis of V. What is the dimension of V?
- 5. Write $\mathbf{w} = (5, -5, 4)$ as a linear combination of $\mathbf{u} = (3, -1, 2)$ and $\mathbf{v} = (2, 2, 3)$, or show that it is impossible.
- 6. A linear map $L : \mathbb{R}^2 \to \mathbb{R}$ has the properties that L(2,3) = 5 and L(-1,2) = 3. Find the formula for L(x,y).
- 7. Give examples (by formulas or pictures) of the following and briefly explain.
 - (a) A subset of \mathbb{R}^2 that is closed under addition but not under scalar multiplication.
 - (b) A subset of \mathbb{R}^2 that is closed under scalar multiplication but not under addition.

READ CAREFULLY!! Do any **THREE** of the following. If you work on more than three, you will get credit for the best three.

- 8. If the following statement is true, prove it. If it is false, give a counterexample. "If \mathbf{u} and \mathbf{v} are independent, and \mathbf{v} and \mathbf{w} are independent, and \mathbf{w} are independent, then \mathbf{u} , \mathbf{v} , and \mathbf{w} are independent."
- 9. Let V be the collection of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that a + d = 0. Determine, with proof, if V is a subspace of $\mathbb{R}^{2 \times 2}$.
- 10. Suppose that A is a matrix and that dim $N(A) \ge 1$. Prove that the columns of A are linearly dependent.
- 11. Suppose $L: V \to W$ is linear. Prove that ker L is a subspace of V.
- 12. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (2x + y, xy). Determine, with proof, if T is linear.