Math 23Final ExamName:16 December 1994200 Points"Show enough work to justify your answers."

- 1. Definitions. (5 points each)
 - (a) Define what it means for $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to be linearly dependent.
 - (b) Define what it means for $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to span a vector space V.
 - (c) Define what it means for a function $f: A \to B$ to be one-to-one, where A and B are sets.
 - (d) Define what it means for a function $f: A \to B$ to be onto.
 - (e) Define what it means for a subset S of a vector space to be closed under scalar multiplication.
 - (f) Define what the kernel is of a linear function $L: V \to W$.
- 2. Determine if $x^2 + 3x 7$, $5x^2 4x + 2$, 3x + 2, and $2x^2 + 7x$ are linearly independent. (10 points)
- 3. Consider the polynomials x 1 and x + 3 in \mathbb{P}_1 .
 - (a) Prove that these polynomials form a basis of \mathbb{P}_1 . (10 points)
 - (b) Find the coordinates of 2x 7 relative to this basis. (10 points)
- 4. Suppose that A is an $n \times n$ matrix and that $A^T A = I$. Prove that the columns of A form an orthonormal basis for \mathbb{R}^n . (15 points)
- 5. Consider the following linear system and matrix.

2x	+	7y	+	12z	=	30	(1)	0	-1	1
4x	+	5y	+	6z	=	24	0	1	2	4
x	+	2y	+	3z	=	9	$\setminus 0$	0	0	0/

- (a) Given that the matrix is the reduced row echelon form of the augmented coefficient matrix of the system, find all solutions of the system. (10 points)
- (b) What are the solutions of the corresponding homogeneous system? (10 points)

- 6. Determine, with proof, which of the following are vector spaces under the usual definitions of addition and scalar multiplication. (10 points each)
 - (a) The solutions of the system of equations in the previous problem.
 - (b) The set of all functions f in $\mathbb{C}(\mathbb{R})$ such that $\int_0^2 f(x) dx = 0$.
- 7. Let U be the subspace of \mathbb{R}^3 spanned by (1, 2, 3) and (2, -1, 0). Let V be the subspace of \mathbb{R}^3 spanned by (5, 0, 3) and (0, 5, 6). Are U and V the same? Why or why not? (15 points)
- 8. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be orthogonal projection onto the line y = x. Find the matrix of T relative to the basis $\{(1, 1), (1, -1)\}$. (10 points)
- 9. Give an example of a function $T : \mathbb{R}^2 \to \mathbb{R}^2$ that is not linear and explain why it is not linear. (15 points)
- 10. Suppose that **u**, **v**, and **w** are non-zero orthogonal vectors in some inner product space. Prove that they are linearly independent. (15 points)
- 11. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ is linear. Find the general formula for $T\begin{pmatrix} x \\ y \end{pmatrix}$ given that

$$T\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 5\\-3\\-1 \end{pmatrix}$$
 and $T\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} -1\\-3\\2 \end{pmatrix}$.

(15 points)

- 12. Find the eigenvalues and eigenvectors of $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. (15 points)
- 13. Go home and don't think about mathematics for a few weeks! (∞ points)