21 November 1994

100 Points

Name:

No Mathematica. You may use a calculator to do arithmetic, but exact answers are expected. "Show enough work to justify your answers."

- 1. Short Answers. (5 points each)
 - (a) State the Cauchy-Schwarz inequality.
 - (b) State what it means for a function $f: X \to Y$ to be one-to-one.
 - (c) Given the pictures of \mathbf{v} and \mathbf{w} , add $\operatorname{Proj}_{\mathbf{v}}\mathbf{w}$ to the picture.
 - (d) Describe the kernel of $D : \mathbb{P}_3 \to \mathbb{P}_3$, where D denotes differentiation.
 - (e) Describe the image of $D : \mathbb{P}_3 \to \mathbb{P}_3$, where D denotes differentiation.
- 2. Find an orthogonal basis for the subspace of \mathbb{R}^3 of solutions of 3x 2y + z = 0. (10 points)
- 3. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (3x y, 2x). This is linear and invertable (you may assume this). Find a formula for T^{-1} . (10 points)
- 4. Consider the matrix $A = \begin{pmatrix} 1 & 5 & 1 & 1 & 0 \\ 1 & 5 & 2 & 4 & 1 \\ 2 & 10 & 0 & -4 & 0 \\ 0 & 0 & 1 & 3 & 1 \end{pmatrix}$. Its reduced row echelon form is $\begin{pmatrix} 1 & 5 & 0 & -2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.
 - (a) The linear function μ_A has domain \mathbb{R}^k and range \mathbb{R}^ℓ , that is, $\mu_A : \mathbb{R}^k \to \mathbb{R}^\ell$. What are the values of k and ℓ ? (5 points)
 - (b) Find a basis for the vector space of solutions of $A\mathbf{x} = \mathbf{0}$. (10 points)
 - (c) Find a basis for the row space of A. (5 points)
- 5. Consider the function $T : \mathbb{P}_2 \to \mathbb{R}^2$ given by $T(p) = \left(\int_0^1 p(x) \, dx, \, p'(2)\right)$. This is linear (you may assume this). Find the matrix for T relative to the bases $\{x^2, x, 1\}$ for \mathbb{P}_2 and $\{(1,0), (0,1)\}$ for \mathbb{R}^2 . (10 points)
- 6. For $\mathbf{v} = (v_1, v_2)$ and $\mathbf{w} = (w_1, w_2)$ in \mathbb{R}^2 , let $\langle \mathbf{v}, \mathbf{w} \rangle = 2v_1w_1 v_1w_2 v_2w_1 + 5v_2w_2$. This is an inner product (you may assume this). Find the line in \mathbb{R}^2 through the origin that is orthogonal to the *y*-axis relative to this inner product (the *y*-axis is spanned by (0, 1), of course). A sufficient answer is either a vector that spans the line or an equation for the line. (10 points)

- 7. Suppose that A is a fixed $n \times n$ matrix, and that $L : \mathbb{M}(n, n) \to \mathbb{M}(n, n)$ is defined by L(X) = AX XA.
 - (a) Prove that L is linear. (10 points)
 - (b) Suppose that n = 2 and $A = \begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix}$.
 - i. Compute $L\left(\begin{pmatrix} 3 & -1\\ 1 & 2 \end{pmatrix}\right)$. (5 points)
 - ii. Extra Credit. (Do on back.) Find the matrix for L relative to the basis

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$
 (5 points)

iii. Extra Credit. Find two independent elements of ker L. (5 points)

8. Have a Happy Turkey Day!