7 October 1994

100 Points

"Show enough work to justify your answers."

- 1. Definitions and Theorems. (5 points each)
 - (a) Give the definition of linear independence of $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$.
 - (b) Give the definition of dimension of a vector space. What fact about vector spaces is important for this definition to make sense?
 - (c) Let S be a subset of a vector space V. Define what it means for S to be closed under vector addition.
 - (d) State the Comparision Theorem.
- 2. Given the pictures of \mathbf{v} and \mathbf{w} , draw the pictures of $\mathbf{v} + \mathbf{w}$ and $\mathbf{v} \mathbf{w}$ as indicated. (10 points)

$$\mathbf{v} + \mathbf{w}$$

 $\mathbf{v} - \mathbf{w}$

- 3. Consider the matrix $\begin{pmatrix} 1 & 5 & 1 & 1 & 0 \\ 1 & 5 & 2 & 4 & 1 \\ 2 & 10 & 0 & -4 & 0 \\ 0 & 0 & 1 & 3 & 1 \end{pmatrix}$. Its reduced row echelon form is $\begin{pmatrix} 1 & 5 & 0 & -2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.
 - (a) Given this, what are the solutions of the following systems? Write the solutions in vector form. (Take advantage of the similarities of the systems.) (5 points each)

	x_1	+	$5x_2$	+	x_3	+	x_4	=	0		
i.	x_1	+	$5x_2$	+	$2x_3$	+	$4x_4$	=	1		
	$2x_1$	+	$10x_{2}$	+		—	$4x_4$	=	0		
					x_3	+	$3x_4$	=	1		
ii.	x_1	+	$5x_2$	+	x_3	+	x_4	+		=	0
	x_1	+	$5x_2$	+	$2x_3$	+	$4x_4$	+	x_5	=	0
	$2x_1$	+	$10x_{2}$	+		_	$4x_4$	+		=	0
					x_3	+	$3x_4$	+	x_5	=	0

- (b) The solutions of this second system form a subspace of \mathbb{R}^5 (you do not need to prove this). Find a basis for this subspace. Explain how you know it is a basis. (5 points)
- 4. Suppose that S and T are subspaces of a vector space V. Prove that $S \cap T$ is also a subspace of V. (15 points)

- 5. Consider the polynomials x 1 and x + 3 in \mathbb{P}_1 .
 - (a) Prove that these polynomials form a basis of \mathbb{P}_1 . (8 points)
 - (b) Find the coordinates of 2x 7 relative to this basis. (7 points)
- 6. Give an example of three non-zero vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in some vector space other than \mathbf{R}^2 such that $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent, $\mathbf{v}_1, \mathbf{v}_3$ are linearly independent, and $\mathbf{v}_2, \mathbf{v}_3$ are linearly independent, but $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent. You do not need to prove the linear independence/dependence, just give an example. (10 points)
- 7. Give a careful proof using the axioms: If $2\mathbf{v} = \mathbf{v}$ then $\mathbf{v} = \mathbf{0}$. Justify each step of your proof by citing one or more of the axioms. (15 points) (Note: The list of axioms was included on the exam.)