
A CONCRETE PROBLEM WORKED ABSTRACTLY:

ANGLES IN A TETRAHEDRON USING

A COORDINATE-FREE APPROACH

Math 223

Problem. Let C be the center of a regular tetrahedron in R
3. Find the angle between

two of the segments joining C to the vertices.

This is problem 4 in Section 4.2 of our text (Messer). I almost put it on a problem set,
but then I realized that it’s pretty hard. The reason it’s hard is because the easy way to
do it would probably not occur to you.

You could waste a lot of time trying to figure out coordinates for the vertices and the
center. Once you have those, of course, then the problem is easy.

Let the vertices of the tetrahedron be A, B, D, and E. Instead of determining specific
coordinates (which would be position vectors) for the vertices, a better approach is to
specify properties that the vectors must satisfy, and then work the problem based on those
properties. This is more abstract, but it gives a much cleaner solution to the problem.

We can assume that A is the origin. Let v1, v2, and v3 be the position vectors of B,
D, and E. As line segments, these are the three edges of the tetrahedron that meet at A.
The other three edges are given by the pairwise differences of these vectors.

What has to be true? A regular tetrahedron is made up of four equilateral triangles.
Thus v1, v2, and v3 all have to have the same length, namely, the length of the sides of
the tetrahedron. Let’s call that �. Thus

(1) ‖v1‖ = ‖v2‖ = ‖v3‖ = �, which is the same as v1 · v1 = v2 · v2 = v3 · v3 = �2.

In addition, the angles between each pair of them must be 60◦. That can be specified
by using (drum roll please) dot products. The most important formula concerning dot
products (and more generally inner products) is v ·w = ‖v‖ ‖w‖ cos θ, where θ is the angle
between the vectors. Thus we have

(2) v1 · v2 = v1 · v3 = v2 · v3 = �2 cos 60◦ =
�2

2
.
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(The second-most important formula concerning dot products is v · v = ‖v‖2.)
I claim that the position vector of the center C of the tetrahedron is w = 1

4 (v1+v2+v3).
This is, in fact, the average of the vertices—remember one vertex is the origin. (Insightful
observation: This is really using v1, v2, and v3 as a basis for R

3 that is adapted to the
problem, and writing w in terms of this basis.) Then the vector from C to A is −w, and
the vector from C to B is v1 − w. If α is the desired angle, then

(3) (−w) · (v1 − w) = ‖−w‖ ‖v1 − w‖ cos α = ‖w‖ ‖v1 − w‖ cos α.

Expanding the left side of this and using (1) and (2) we have

(−w) · (v1 − w) = w · w − w · v1

=
1
16

(v1 + v2 + v3) · (v1 + v2 + v3) − 1
4
(v1 + v2 + v3) · v1

=
1
16

(v1·v1 + v2·v2 + v3·v3 + 2v1·v2 + 2v1·v3 + 2v2·v3)

− 1
4
(v1·v1 + v2·v1 + v3·v1)

=
1
16

(6�2) − 1
4
(2�2) =

3
8
�2 − 1

2
�2 = −1

8
�2.

If you chase through part of this computation, you see that w · w = 3�2/8, and so ‖w‖ =
�
√

3/8. A similar computation yields ‖v1 − w‖ = �
√

3/8. Then (3) becomes −�2/8 =
(3�2/8) cos α. Thus

cos α = −1
3
, or α = arccos

(
−1

3

)
≈ 1.91 radians = 109.5◦.

One final observation . . . there was no need to assume that one of the vertices is the
origin. Instead of v1 being the position vector of B, it is the difference B − A, so it’s
still the vector from A to B, which I like to write as

−→
AB. Similarly, v2 =

−→
AD = D − A,

v3 =
−→
AE = E − A, and w =

−→
AC = C − A. The rest of the computation is unchanged.

Note that if you solve the last equation for C and substitute, you get

C = A + w = A +
1
4
(v1 + v2 + v3) =

1
4
(A + B + D + E),

which more nicely represents the center as the average of the vertices.
Note that when we think of v1, v2, v3, and w in this way, that is, as displacement

vectors from A and not as position vectors, then A, B, C , D, and E represent position
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vectors from some completely unspecified origin. Think about this. The vector A could
be any vector whatsoever, depending on where the origin is. The same is true about B,
C , D, and E. However the vectors v1, v2, v3, and w are not arbitrary at all. They would
be the same no matter where the origin is.

My feeling about this is that if viewing A, B, C , D, and E as vectors (position vectors)
requires some arbitrary sixth point to be an origin, then maybe it’s better to think of
them as points instead of vectors. (After all, look around you. Do you see an origin? No.)
Vectors still exist, but they are displacements between points. Thus, even though A and
B are not vectors, v1 is still

−→
AB, the vector from A to B. There is a way to make this

point of view rigorous, you can still write
−→
AB as B − A and the algebra all works out.

(Three-dimensional space becomes an affine space instead of a vector space.) There’s also
a benefit for doing this. In most geometric problems that involve vectors (many physics
problems, for example), the origin is either some point related to the problem or it is
completely arbitrary. In either case, it is just a convenient reference point, and it often
gets in the way. If you don’t worry about where the origin is and treat the points as points
instead of as position vectors, the problem often becomes simpler.

One last thing, and then I really will quit . . . as dependent as Mathematica is on coordi-
nates, it’s possible to write Mathematica code in a largely coordinate-free way. I really like
this because it allows me to write Mathematica code in the way I think mathematically.

Robert L. Foote, Spring 2001
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