
COMMENTS ON THE GRAM-SCHMIDT

PROCESS AND PROJECTIONS

Math 223 Spring 2001

The Gram-Schmidt process is an algorithm that takes a collection of linearly indepen-
dent vectors u1, . . . ,un in an inner product space V and converts them into an orthogonal
collection of unit vectors e1, . . . , en. There are some things to note about the algorithm
that lend some insight into what it is doing.

If the formulas in the book are written in terms of the intermediate collection of vectors
v1, . . . ,vn by replacing ei with vi/ ‖vi‖, we have

v1 = u1,

v2 = u2 − 〈u2,v1〉
〈v1,v1〉v1,

v3 = u3 −
(〈u3,v1〉
〈v1,v1〉v1 +

〈u3,v2〉
〈v2,v2〉v2

)
,

. . .

vk = uk −
(〈uk,v1〉
〈v1,v1〉v1 + · · · + 〈uk,vk−1〉

〈vk−1,vk−1〉vk−1

)
for k ≤ n.

These formulas are not particularly good from a computational standpoint, since the inner
products 〈v1,v1〉, 〈v2,v2〉, etc., would have to be computed repeatedly, however there are
some things that are perhaps more evident from them. We see that v2 is a linear combi-
nation of u1 (= v1) and u2. It follows that span{v1,v2} = span{u1,u2}. Similarly, v3 is
a linear combination of v1, v2 and u3, and so of u1, u2 and u3, since v1 and v2 are linear
combinations of u1 and u2. It follows that span{v1,v2,v3} = span{u1,u2,u3}. Contin-
uing (there is an induction argument), we get that span{v1, . . . ,vk} = span{u1, . . . ,uk}
for each k ≤ n. Since ei = vi/ ‖vi‖, we have span{e1, . . . , ek} = span{u1, . . . ,uk}. If we
let

V1 = span{e1} = span{u1},
V2 = span{e1, e2} = span{u1,u2},

. . .

Vk = span{e1, . . . , ek} = span{u1, . . . ,uk} for k ≤ n,

we see that the process preserves the nested sequence of subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ Vn.

Another observation from the formulas above (and which is made in the book) is that the
process involves projections. In particular, for any w ∈ V we have Projvi

w = 〈w,vi〉
〈vi,vi〉vi =

〈w, ei〉ei = Projei
w. Thus the Gram-Schmidt formulas can be written as

v1 = u1,

v2 = u2 − Projv1
u2,

v3 = u3 −
(
Projv1

u3 + Projv2
u3

)
,

. . .

vk = uk −
(
Projv1

uk + · · · + Projvk−1
uk

)
for k ≤ n.

In Section 4.5 the author (Messer) defines projection into a subspace. With that concept
in mind we see that Projv1

w + · · · + Projvk−1
w is projection of w into the subspace Vk,

written as ProjVk−1
w, and so the formulas can be written as

v1 = u1,

v2 = u2 − ProjV1
u2,

v3 = u3 − ProjV2
u3,

. . .

vk = uk − ProjVk−1
uk for k ≤ n.

I’ll make one final observation. If S is a subspace of V and w ∈ V , then, as is pointed
out in Section 4.5, the vector w− ProjSw is perpendicular to S (more precisely, it is per-
pendicular to every vector in S). If we let S⊥ be the collection of all vectors perpendicular
to S, then w − ProjSw is in S⊥. It should come as no surprise that S⊥ is a subspace of
V (you should be able to prove this!), called the orthogonal complement of S. Now the
process of projecting w into S was one of writing w as the sum of two vectors, one in S
and one perpendicular to S, that is, in S⊥. The one that’s in S is ProjSw, and so the one
that’s in S⊥ is ProjS⊥w, that is, w = ProjSw + ProjS⊥w, or w − ProjSw = ProjS⊥w.
Thus the Gram-Schmidt formulas can be written as

v1 = u1,

v2 = ProjV ⊥
1

u2,

v3 = ProjV ⊥
2

u3,

. . .

vk = ProjV ⊥
k−1

uk for k ≤ n.

Thus at each step of the algorithm we consider the subspace Vk−1 = span{u1, . . . ,uk−1}.
The vector uk is not in Vk−1. It might not be perpendicular to Vk−1, and so we replace it
with its component that is perpendicular to Vk−1, that is, its component in V ⊥

k−1, which
is ProjV ⊥

k−1
uk. Note that the subspaces V ⊥

1 , . . . , V ⊥
n are also nested, but in reverse order

from V1, . . . , Vn:
V ⊥

1 ⊃ V ⊥
2 ⊃ · · · ⊃ V ⊥

n .

