
BASES, COORDINATES, LINEAR MAPS, AND MATRICES

Math 223

Bases and Coordinates

Let V be a vector space, and suppose that B = [v1; : : : ;vn] is a basis for V . This basis
induces a linear map from Rn to V , namely, given (x1; : : : ; xn)T in Rn we use x1; : : : ; xn
as coe±cients of v1; : : : ;vn in a linear combination.1 In symbols the map is

(1) Rn ! V;

0
@
x1
...
xn

1
A 7! x1v1 + ¢ ¢ ¢+ xnvn:

This map de¯nes a linear one-to-one correspondence between Rn and V . Although the
map going from V back to Rn doesn't have a nice formula in general, it's a familiar process.
Namely, given v in V , write v as a linear combination of v1; : : : ;vn. The coe±cients de¯ne
an element of Rn. These coe±cients are called the coordinates of v relative to the basis
B, and are denoted as [v]B . More precisely, [v]B is the unique element of Rn that maps to
v in (1).

Note that the formula in (1) can be written as

(2) x1v1 + ¢ ¢ ¢+ xnvn = [v1; : : : ; vn]

0
@
x1
...
xn

1
A ;

where we can think of [v1; : : : ;vn] as a row matrix whose entries are elements of V (as
opposed to numbers). If V is a subspace of Rk and we write v1 ; : : : ;vn as column vectors,
then [v1; : : : ;vn] is a k £ n matrix, and the product in (2) is simply the usual matrix
multiplication. (Recall that if A is a matrix with n columns and c is a vector in Rn, then
Ac is the linear combination of the columns of A using the entries of c as coe±cients.)
Using this notation, we get that

(3) v = [v1; : : : ;vn][v]B for all v 2 V

and 2
4[v1; : : : ;vn]

0
@
x1
...
xn

1
A
3
5

B

=

0
@
x1
...
xn

1
A for all

0
@
x1
...
xn

1
A 2 Rn:

1In this handout, all vectors in Rk will be denoted by column vectors.
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(Pause for a moment to think about what these equations mean!) The relationship between
the basis B and the coordinate system it induces on V can be summarized by the following
diagram.

V

[ ]B

???y
x??? mult by

[v1;:::;vn]

Rn

Example 1. Let V be the subspace of R3 given by 3x ¡ 2y + 4z = 0. The vectors
v1 = (2; 3; 0)T and v2 = (0; 2; 1)T are in V and are independent. Since dimV is 2, then
B = [v1;v2 ] is a basis for V . The vector w = (2; 15; 6)T is in V , and so is a linear
combination of v1 and v2. In fact,

w = v1 + 6v2 = [v1;v2]
µ

1
6

¶
; and so [w]B =

µ
1
6

¶
:

Example 2. Let V = fp 2 P3 j p(1) = 0g. This is a two-dimensional subspace of P3, and
a basis for V is B = [x ¡ 1; x(x ¡ 1)]. The polynomial q(x) = 2x2 + x ¡ 3 is in V , and so
is a linear combination of x¡ 1 and x(x¡ 1). We have

q(x) = 3(x¡ 1) + 2x(x ¡ 1) = [x ¡ 1; x(x ¡ 1)]
µ

3
2

¶
; and so [q]B =

µ
3
2

¶
:

Change of Basis

Now suppose that B = [v1; : : : ;vn] and ~B = [~v1; : : : ; ~vn] are two bases for V . We then
have two coordinate systems on V , and it's good to have a way to get from one to the
other, that is, if you have the coordinates of v relative to one basis, you should be able
to compute the coordinates relative to the other basis. The advantage of representing
coordinate systems as linear maps from V to Rn is that these maps will do the work for
us.

The two coordinate maps from V to Rn are

[ ]B : V ! Rn; [v]B =

0
@
x1
...
xn

1
A ; and [ ] ~B : V ! Rn; [v] ~B =

0
@

~x1
...

~xn

1
A ;

where x1; : : : ; xn are the coordinates of v relative to B and ~x1; : : : ; ~xn are the coordinates
of v relative to ~B. We can arrange these maps into a diagram as follows.

V
[ ]B. &[ ] ~B

Rn ¡!
?

Rn

2



The map across the bottom is de¯ned by going around the diagram: a vector (x1 ; : : : ; xn)T

in the left Rn is taken up to V via [ ]¡1
B , which is the map in (1), and then down to the

right Rn via [ ] ~B. Now (x1; : : : ; xn)T is the coordinate vector relative to B of some vector
v in V . The result of going up to V via [ ]¡1

B is just v itself! Going down to the right Rn

results in the coordinates of v relative to ~B. Thus, the map across the bottom changes
the coordinates of v relative to B into the coordinates of v relative to ~B! We denote it by
CB ~B . This map is linear, since it's the composition of linear maps, and so it is given by
multiplication by some n£n matrix, also denoted by CB ~B . Here is the completed diagram.

(4)

V
[ ]B. &[ ] ~B

Rn ¡¡¡!
CB ~B

Rn

In this diagram there are two ways to take a vector v in V to the right Rn, namely go
directly there, or go the long way through the left Rn. By the way the bottom map is
de¯ned, it follows that it doesn't matter which way you go, you get the same thing. The
equation that says this is

(5) CB ~B [v]B = [v] ~B:

Note that the equation says that mulitplying the coordinates of v relative to B by the
matrix CB ~B results in the coordinates of v relative to ~B.

We know that if A is a matrix with n columns and if ej is the jth vector in the standard
basis for Rn, then Aej is the jth column of A. Since [vj ]B = ej, equation (5) gives us

(jth column of CB ~B) = CB ~Bej = CB ~B [vj]B = [vj] ~B:

In words, the jth column of the matrix CB ~B consists of the coordinates of the jth basis
vector of B relative to the basis ~B. We can write

CB ~B = ([v1] ~B; : : : ; [vn] ~B) :

Here's another way to see this. If v 2 V , then

v = [v1; : : : ;vn][v]B = [~v1; : : : ; ~vn][v] ~B = [~v1; : : : ; ~vn]CB ~B [v]B;

where the last equality follows from (5). If we let [v]B = (x1; : : : ; xn)T , then we have

[v1; : : : ;vn]

0
@
x1
...
xn

1
A = [~v1; : : : ; ~vn]CB ~B

0
@
x1
...
xn

1
A

for all (x1; : : : ; xn)T in Rn. It follows that

[v1; : : : ;vn] = [~v1; : : : ; ~vn]CB ~B :
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This last step is similar to the fact that if A and B are matrices of the same dimension
and that Ax = Bx for all vectors x, then A = B.) Each side of this equation is a list of n
vectors in V . The jth vector on the left is vj. The jth vector on the right is [~v1; : : : ; ~vn]
times the jth column of CB ~B. Thus

vj = [~v1; : : : ; ~vn](jth column of CB ~B):

But this says that the jth column of CB ~B is the coordinate vector of vj relative to ~B by
the ~B version of (3).

Finally, note that C ~BB , the matrix that converts coordinates relative to ~B into coordi-
nates relative to B, should be the inverse of CB ~B, since it represents the linear transforma-
tion along the bottom of (4) from right to left.

Example 1 (cont). A second basis for V = f(x; y; z) j 3x ¡ 2y +4z = 0g is ~B = [~v1; ~v2],
where ~v1 = (2; 5; 1)T and ~v2 = (¡4; 0; 3)T . You can show that v1 = 3

5 ~v1 ¡ 1
5 ~v2 and

v2 = 2
5 ~v1 + 1

5 ~v2 . It follows that CB ~B =
³

3=5 2=5
¡1=5 1=5

´
= 1

5

µ
3 2
¡1 1

¶
.

Recall that the coordinate vector of w = (2; 15; 6)T relative to B is [w]B = (1; 6)T . Its
coordinate vector relative to ~B should then be

[w] ~B = CB ~B [w]B =
1
5

µ
3 2
¡1 1

¶µ
1
6

¶
=
µ

3
1

¶
:

Indeed, we have

[~v1; ~v2]
µ

3
1

¶
= 3~v1 + ~v2 = w:

It's important to remember here that the vector w doesn't change. What changes is the
way we refer to it. The situation is similar to measuring a distance in feet and in meters.
You get di®erent results, not because the distance changes, but because you are measuring
it di®erently.

The matrix converting coordinates relative to ~B into coordinates relative to B is C ~BB =
C¡1
B ~B =

³
1 ¡2
1 3

´
.

Example 2 (cont). A second basis for V = fp 2 P3 j p(1) = 0g is ~B = [x ¡ 1; x2 ¡ 1].
Since x¡ 1 is the ¯rst element of both bases, its coordinate vector relative to either basis
is (1; 0)T . We also have that

x(x ¡ 1) = ¡(x¡ 1) + (x2 ¡ 1) = [x¡ 1; x2 ¡ 1]
µ
¡1
1

¶
;

and so [x(x ¡ 1)] ~B = (¡1; 1)T . The change of coordinates matrix is then CB ~B =
³

1 ¡1
0 1

´
.

From above we have [q]B =
µ

3
2

¶
, and so

[q] ~B = CB ~B[q]B =
µ

1 ¡1
0 1

¶µ
3
2

¶
=
µ

1
2

¶
:
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Checking this,

[x¡ 1; x2 ¡ 1]
µ

1
2

¶
= (x ¡ 1) + 2(x2 ¡ 1) = 2x2 +x ¡ 3 = q(x);

as needed.

Linear Maps and Matrices

Let W be another vector space, and suppose B̂ = [w1; : : : ;wm] is a basis for W . As
above, we get the linear map [ ]B̂ : W ! Rm so that the entries of [w]B̂ are the coordinates
of w 2W relative to B̂.

Now suppose L : V !W is linear. We get the following diagram of spaces and maps.

V L¡¡¡¡! W

[ ]B

??y
??y[ ]B̂

Rn ¡¡¡¡!
?

Rm

The map across the bottom is de¯ned by going around the diagram from Rn up to V via
[ ]¡1
B , which is the map in (1), then across to W via L, then down to Rm via [ ]B̂. This map

is linear, and so is given by multiplication by some matrix, namely the matrix of L relative
to the bases B and B̂, denoted by [L]BB̂. This can actually be used as the de¯nition of this
matrix! The diagram then becomes

(6)

V L¡¡¡¡! W

[ ]B

??y
??y[ ]B̂

Rn ¡¡¡¡!
[L]BB̂

Rm

With the bottom map de¯ned by going around the other three sides of the diagram, it
follows that if you start with a vector v in V and follow the maps to Rm, it doesn't matter
which way you go, you get the same thing. The equation that says this is

(7) [L]BB̂[v]B = [L(v)]B̂:

The left side of this is the result of going from V down to Rn by taking the coordinates
of v relative to B, and then across to Rm by multiplying by the matrix [L]BB̂. The right
side is the result of going across to W by L, and then down to Rm by taking coordinates
of L(v) relative to B̂.

We know that if A is a matrix with n columns and if ej is the jth vector in the standard
basis for Rn, then Aej is the jth column of A. Since [vj ]B = ej equation (7) gives us

[L]BB̂ej = [L]BB̂ [vj ]B = [L(vj)]B̂ ;
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which says that the jth column of [L]BB̂ is [L(vj)]B̂ . In words, the jth column of the matrix
of L consists of the coordinates of L(vj) relative to the basis B̂. This is, of course, how
we have computed matrices all along. The point is that this form for the matrix is forced
upon us as soon as we say that the map across the bottom in diagram (6) is de¯ned by
going around the other three sides.

In many applications we work with a linear map from a vector space to itself, that is,
W = V in (6). In this case we generally take the bases B and B̂ to be the same, and the
diagram becomes

(60)

V L¡¡¡¡! V

[ ]B

??y
??y[ ]B

Rn ¡¡¡¡!
[L]B

Rn

Note that we write [L]B instead of [L]BB , as the extra B is now redundant. The equation
that goes around the diagram both ways is
(70) [L]B [v]B = [L(v)]B ;
which replaces equation (7).

Example 1 (cont). Let P : R3 ! R3 be orthogonal projection onto the xy-plane, and
let Q : R3 ! R3 be orthogonal projection onto the subspace V . As you computed in a
homework problem, the matrix for Q ± P is

1
29

µ
20 6 0
6 25 0
¡12 8 0

¶
:

We de¯ne L to be this composition restricted to V , that is, L : V ! V , L(v) = (Q ±P)(v).
Applying this to the basis vectors of B we get

L(v1) = (Q ± P )(v1) =
µ

2
3
0

¶
= v1 + 0v2 =

2
29

(3v1 + 8v2)

and
L(v2) = (Q ± P)(v2) =

2
29

µ
6
25
8

¶
=

2
29

(3v1 + 8v2) =
6
29

v1 +
16
29

v2 :

(Note that v1 is in both V and the xy-plane, so it is unchanged by either projection.) The
matrix for L relative to B is then [L]B =

³
1 6=29
0 16=29

´
.

Example 2 (cont). De¯ne L: V ! V by L(p) = (1 ¡ x)p0(x). You should verify that
this is linear. Applying L to the elements of the basis B we get

L(x¡ 1) = (1¡ x)(x¡ 1)0 = 1 ¡ x = ¡(x¡ 1) + 0x(x ¡ 1) = [x¡ 1; x(x¡ 1)]
µ
¡1
0

¶

and

L
¡
x(x¡1)

¢
= (1¡x)(x2¡x)0 = ¡2x2+3x¡1 = (x¡1)¡2x(x¡1) = [x¡1; x(x¡1)]

µ
1
¡2

¶
:

The matrix for L relative to B is then [L]B =
³
¡1 1
0 2

´
.
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How the Matrix for a Linear Map Changes Under a Change of Basis

If B = [v1; : : : ;vn] and ~B = [~v1 ; : : : ; ~vn] are bases for V , and if L : V ! V , we get
matrices CB ~B , C ~BB, [L]B , and [L] ~B. How are these matrices related? We already know
that the ¯rst two are inverses of each other, so the real question is how the matrix for L
changes when the basis is changed from B to ~B. The answer lies in putting together a
complicated but natural diagram of spaces and maps by combining the previous diagrams
(4) and (60) along with their analogs for C ~BB and [L] ~B . Here they are.

(8)

V
[ ]B. &[ ] ~B

Rn ¡¡¡!
CB ~B

Rn

V
[ ] ~B. &[ ]B

Rn ¡¡¡!
C ~BB

Rn

V L¡¡¡¡! V

[ ]B

??y
??y[ ]B

Rn ¡¡¡¡!
[L]B

Rn

V L¡¡¡¡! V

[ ] ~B

??y
??y[ ] ~B

Rn ¡¡¡¡!
[L] ~B

Rn

The latter two diagrams can be attached along their common edge V L¡! V .

Rn [ ]BÃ¡¡¡¡ V
[ ] ~B¡¡¡¡! Rn

[L]B

??y
??yL [L] ~B

??y

Rn Ã¡¡¡¡
[ ]B

V
[ ] ~B¡¡¡¡! Rn

We now consider the map across the top from the right Rn to the left Rn. It is C ~BB !
Similarly, the map across the bottom from left to right is CB ~B. Filling these in, the
resulting diagram contains all four of those in (8)!

(9)

C ~BB??y
x??

Rn [ ]BÃ¡¡¡¡ V
[ ] ~B¡¡¡¡! Rn

[L]B

??y
??yL [L] ~B

??y

Rn Ã¡¡¡¡
[ ]B

V
[ ] ~B¡¡¡¡! Rn

x??
??y

CB ~B

Multiplying by the matrix [L] ~B goes from the upper right Rn to the lower right Rn.
Another, equivalent, way to go between these corners is to go around the outside of the
diagram counter clockwise, taking, in turn, the arrows marked C ~BB , [L]B , and CB ~B. The
product of these matrices, in the appropriate order, must equal [L] ~B. We have

[L] ~B = CB ~B [L]BC ~BB = CB ~B[L]BC¡1
B ~B :

7



We could have discovered this formula by combining the formulas (5) and (70) with
their analogs for C ~BB and [L] ~B , since these formulas contain the same information as the
corresponding diagrams. In retrospect it's not too di±cult, and it emphasizes that, despite
the complexity of the forest of arrows in (9), the matrix multiplications [L]B and [L] ~B down
the left and right sides of the diagram are really just representations of the map L down
the middle. If v 2 V , then

[L] ~B [v] ~B = [L(v)] ~B = CB ~B [L(v)]B = CB ~B [L]B[v]B = CB ~B[L]BC ~BB [v] ~B:

We then have [L] ~B [v] ~B = CB ~B [L]BC ~BB[v] ~B for all v 2 V . This is the same as

[L] ~B

0
@
x1
...
xn

1
A = CB ~B [L]BC ~BB

0
@
x1
...
xn

1
A

for all (x1; : : : ; xn)T 2 Rn. It follows that [L] ~B = CB ~B [L]BC ~BB . This should make sense.
What it says is that computing L(v) by using the coordinates of v and matrix of L relative
to ~B is the same as converting to the B coordinate system, doing the computation in B
coordinates, and then switching back to ~B coordinates.

Can you ¯gure out which corners of the diagram the coordinate vectors [v] ~B , [L(v)] ~B
[L(v)]B , and [v]B in this computation belong to?

Example 1 (cont). The matrix for L relative to ~B is

[L] ~B = CB ~B [L]BC¡1
B ~B = 1

5

µ
3 2
¡1 1

¶
1
29

µ
29 6
0 16

¶µ
1 ¡2
1 3

¶
= 1

145

µ
137 ¡24
¡19 88

¶
:

Example 2 (cont). The matrix for L relative to ~B is

[L] ~B = CB ~B[L]BC¡1
B ~B =

µ
1 ¡1
0 1

¶µ
¡1 1
0 2

¶µ
1 1
0 1

¶
=
µ
¡1 2
0 ¡2

¶
:

Robert L. Foote, November 1997
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