
A THEOREM ON COLUMN SPACES
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Math 223

Let A be an m × n matrix. The column space of A is the subspace of R
m spanned by

the columns of A.

Theorem. Let A be an m × n matrix, and let E be the reduced row echelon form of
A. Then a basis for the column space of A consists of the columns of A corresponding
to the leading 1’s in E (the pivot columns). Furthermore, each column of E contains the
coefficients needed to write the corresponding column of A as a linear combination of this
basis.

An example will clarify this. Suppose that we want to find a basis for the subspace of
R

3 spanned by the vectors (1, 2, 3), (3,−1,−5), (1,−5,−11), (1,−2, 1), and (34,−8,−20).
Furthermore, we would like the basis to consist of vectors in this collection. The Contrac-
tion Theorem (the theorem that says every spanning set contains a basis) tells us we can
do this. In addition, we would like to know how the remaining vectors depend on the basis
vectors. The theorem above gives us a computational way to do this.

Let the matrix A consist of these vectors as columns and compute its reduced row
echelon form E. We get (as you should verify!)

A =

⎛
⎝

1 3 1 1 34
2 −1 −5 −2 −8
3 −5 −11 1 −20

⎞
⎠ and E =

⎛
⎝

1 0 −2 0 5
0 1 1 0 8
0 0 0 1 5

⎞
⎠ .

Note that E is not simply in echelon form, it is in reduced echelon form—the pivots are
all 1’s and the other entries in the pivot columns are 0’s.

According to the theorem, a basis for the column space of A consists of the vectors
(1, 2, 3), (3,−1,−5), and (1,−2, 1), corresponding to the first, second, and fourth columns
of E. (Since there are three vectors in the basis, it follows that the column space of A
is actually all of R

3.) The remaining columns of A are linear combinations of these, the
coefficients being given by the corresponding columns of E. For example, the third columns
of A and E tell us that

(1,−5,−11) = −2(1, 2, 3) + 1(3,−1,−5).

Similarly, the last columns tell us that

(34,−8,−20) = 5(1, 2, 3) + 8(3,−1,−5) + 5(1,−2, 1).



This is just another example showing that the row reduction process generates quite a
variety of information!

The proof of this theorem is fairly simple, and is based on a careful examination of the
process we use to solve linear equations. Consider the homogeneous linear system

a11x1 + · · · + a1nxn = 0
...

am1x1 + · · · + amnxn = 0.

This is equivalent, of course, to the matrix equation AX = 0, where

A =

⎛
⎝

a11 . . . a1n
...

...
am1 . . . amn

⎞
⎠ and X =

⎛
⎝

x1
...

xn

⎞
⎠ .

As we have seen, if we write A in block form as A = (a1 . . . an), where a1, . . . , an are the
columns of A, then

AX = (a1 . . . an)

⎛
⎝

x1
...

xn

⎞
⎠ = x1a1 + · · · + xnan.

Thus the matrix equation AX = 0 becomes

(1) x1a1 + · · · + xnan = 0,

which is the equation from which we make conclusions about the independence or depen-
dence of the vectors a1, . . . , an, including how some of them may be linear combinations
of the others.

To solve the system AX = 0, we apply row operations to A to reduce it to echelon form.
Suppose B is a matrix obtained from A by row operations,

B =

⎛
⎝

b11 . . . b1n
...

...
bm1 . . . bmn

⎞
⎠ .

If we use B to write a system of equations,

b11x1 + · · · + b1nxn = 0
...

bm1x1 + · · · + bmnxn = 0,



we know that this system is equivalent to the original system. This is because the row
operations simply mimic algebraic operations we could use to solve the equations. The
systems are equivalent because the operations are reversible. Consequently the systems
have the same solutions. Writing B in block column form, B = (b1 . . . bn), this second
system can be written as

(2) x1b1 + · · · + xnbn = 0.

The important point in comparing (1) and (2) is that any coefficients satisfying one of
them also satisfy the other. If all of the coefficients have to be 0, then both collections of
vectors {a1, . . . ,an} and {b1, . . . ,bn} are linearly independent. If the coefficients don’t all
have to be 0, then both collections of vectors are linearly dependent.

The proof of the theorem involves pushing this just a bit more. Suppose that some
column of B, say bk, is a linear combination of the other columns. It should be clear that
this is the same as saying that coefficients x1, . . . , xn can be found that satisfy (2) such
that xk = −1:

x1b1 + · · · + xk−1bk−1 − bk + xk+1bk+1 + · · · + xnbn = 000.

By the equivalence of (1) and (2), we have

x1a1 + · · · + xk−1ak−1 − ak + xk+1ak+1 + · · · + xnan = 000.

As a consequence, ak is a linear combination of the other columns of A using the same
coefficients.

Furthermore, suppose some collection of the columns of B are linearly dependent, that
is, some non-trivial linear combination of them (meaning that not all of the coefficients
are 0) equals 000. Then the same linear combination (i.e., using the same coefficients) of
the corresponding columns of A equals 000, and so the corresponding columns of A are also
dependent. Conversely, if some collection of the columns of B are linearly independent, so
are the corresponding columns of A.

Let’s apply this letting B be E, the reduced echelon form of A. You may want to refer
to the example on the first page, but our reasoning will be general. Note that the pivot
columns of E—suppose there are � of them—are the first � vectors in the standard basis
for R

m. Thus they are linearly independent. It follows that the corresponding columns
of A are independent. Denote these columns of A by ã1, . . . , ã�. (Note that ãj is not
necessarily equal to aj . In the example, ã3 is a4, that is, the third pivot column is the
fourth column.) Furthermore, if wk is a non-pivot column of E, it’s clear how it is written
as a linear combination of the pivot columns. It’s the same as writing wk in terms of the
standard basis—the entries of wk are the coefficients. It follows that

ak = w1kã1 + · · · + w�kã�,

where w1k, . . . , w�k are the first � coefficients of wk. (Note that the remaining coefficients
of wk are 0 because the rows of E that don’t contain pivots are all zeros.) This is the second



claim in the statement of the theorem. Since every column of A is a linear combination of
ã1, . . . , ã�, it follows that these vectors form a basis for the column space of A.

This completes the proof of the theorem, but as an added bonus, it follows that the
reduced echelon form E of A is unique! Here’s why. The theorem gives us another way
to construct the matrix E. Consider the columns of A one-by-one starting with a1. If the
first few columns of A are all zeros, let the corresponding columns of a new matrix F be
zeros. For the first non-zero column of A, let the corresponding column of F be the first
standard basis vector of R

m. For each subsequent column of A, if it is a linear combination
of the previous columns, let the corresponding column of F consist of the coefficients used
to form the linear combination (which are unique), otherwise let that column of F be the
next standard basis vector. This process uniquely determines the matrix F , but it also
describes the matrix E in the theorem. Therefore E = F and so E is unique.
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