9 October 1998
100 Points
"Show enough work to justify your answers."

1. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-4 x^{3}}{x^{3}+7}$. (10 points)

Read Carefully! Do any six of the following questions. If you do more than six, you will get credit for the best six. Fifteen points each.
2. The graph of the derivative of a function f is shown. Answer the following. Detailed reasons are not necessary.
a) Where is f increasing?
b) Where is f concave up?
c) Where does f have stationary points?
d) Where does f have local maxima?
e) If $f(-1)=-2$, what is the tangent line to f at $x=-1$?
3. The graph of the derivative of a function f is shown.

Explain why $f(1)-f(-3)>7$.
4. Let $f(x)=\left\{\begin{array}{ll}x^{2} \sin (1 / x)+x & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.

It turns out that f is differentiable at $x=0$, but Mathematica has trouble computing $f^{\prime}(0)$. Using either a calculator or Mathematica, find an approximation for $f^{\prime}(0)$. Briefly describe what you do to find your approximation by including some computation or picture that you found useful. Note: You can just use the first part of the formula to define the function in Mathematica.
5. If $f(3)=-2$ and $f^{\prime}(x)<1$ for all x, use the Racetrack Principle to say something about $f(8)$ and $f(0)$.
6. Sketch graphs of functions with the following properties. (Note that this problem has two parts.)
a) $f(x)$ is defined for $-5 \leq x \leq 5, f(-5)=0, f^{\prime}(x)<0$ for $-5 \leq x \leq-2$, $\lim _{x \rightarrow 0^{-}} f(x)=3, f(0)=-1, f^{\prime \prime}(x)>0$ for $x>0$.
b) $g(x)$ is continuous and defined for $x \geq 0, g(0)=0, g^{\prime \prime}(x)>0$ for $x>3$, $\lim _{x \rightarrow \infty} g(x)=2$.
7. State the definition of $f^{\prime}\left(x_{0}\right)$ and use it to compute $f^{\prime}(3)$ where $f(x)=x^{2}+2 x$.
8. State the definition of $f^{\prime}\left(x_{0}\right)$ and explain in words or pictures why it measures the slope of f at x_{0}.
9. We often use phrases such as "the maximum of f is 6 " and "the maximum of f occurs at 6." These do not mean the same thing. Carefully explain the difference between these, in words or pictures.
10. Suppose $f(2)=4, f^{\prime}(2)=-1 / 2$, and $f^{\prime \prime}(x)<0$ for $x>0$. Explain why the graph of f must cross the x-axis somewhere to the left of $x=10$. Hint: What can you say about $f(10)$?

