Exam 3

18 November 1998 100 Points "Show enough work to justify your answers."

- 1. **Read Carefully!** Do any **two** of the following. If you do more than two, you will get credit for the best two. (10 points each)
 - a) Evaluate $\int x^2 \sin(x^3) dx$. Show all steps.
 - b) Compute the area between the curves $y = x^2$ and $y = x^3$.
 - c) At some point the authors of the book claimed that $\int \ln x \, dx = x \ln x x + C$. Verify this. Hint: What does a statement like this mean?

Read Carefully! Do any **four** of the remaining questions. If you do more than four, you will get credit for the best four. (20 points each)

- 2. Consider the integral $\int_a^b f(x) dx$, where three copies of the graph of f are shown.
 - a) Assuming three subdivisions of the interval [a, b] are used, draw the rectangles and trapezoids used in the left, right, and trapezoid approximating sums for the integral. Use different graphs for the different sums.
 - b) Which of these sums overestimate and which underestimate the value of the integral? Which gives the closest estimate? Explain.

- 3. Let f be the function graphed below left.
 - a) What is the value of $\int_3^{-1} f(x) dx$?
 - b) Let $F(x) = \int_{-3}^{x} f(t) dt$. Find a formula for F(x) for x in the interval [1,3].

- 4. Let f be the function graphed above right. Note that the line segment between (3,5) and (6,1) lies above the graph of f while the line segment between (3,4) and (6,0) lies below the graph of f. Use this information to find two numbers L and U such that $L < \int_{3}^{6} f(x) dx < U$.
- 5. One of the basic properties of integrals is $\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$.
 - a) Suppose a < b < c. Using words and pictures explain why the formula is true.
 - b) Explain why it is true even if a < c < b.

- 6. Let $G(x) = \int_0^x \sqrt{7 + t^2} dt$.
 - a) What does Mathematica get for $\int_0^3 \sqrt{7+x^2} dx$? Give both the exact value and the numerical approximation. (Note: The exact value involves a function we haven't studied.)
 - b) Find the equation of the line tangent to the graph of G at x = 3. You may use numerical approximations.
 - c) What is G''(3) exactly?
- 7. Let f be the function graphed below. Let $F(x) = \int_{-3}^{x} f(t) dt$. Answer the following. Detailed reasons are not necessary.
 - a) For what values of x in [-4, 4] is F(x) positive?
 - b) Where is F increasing?
 - c) Where is F concave down?
 - d) Where does F have local maxima?

