Exam 1

21 September 1998
"Show enough work to justify your answers."
No calculators or computers!

1. Let $f(x)=x^{2}$. Define the function m for $x \neq-1$ by letting $m(x)$ be the slope of the line intersecting the graph of f at $(-1,1)$ and $(x, f(x))$. Find a formula for $m(x)$ and simplify. (10 points)
2. Suppose that the function f takes a maximum value of 10 at $x=3$ and a minimum value of 2 at $x=8$. Let $g(x)=-2 f(x+4)+3$. What is the maximum value of g and where does it occur? Briefly explain. (10 points)
3. If $|x-8|<3$, find two numbers L and U so that $L<x<U$. (6 points)
4. Simplify the following. (6 points each)
a) $\log _{3} \frac{1}{9}$
b) $\ln e^{5}$
c) $8^{\log _{2} 5} \quad\left(\right.$ Hint: $\left.8=2^{3}\right)$
5. Let θ be the pictured angle.
a) What is the radian measure of θ ? (5 points)
b) What are $\sin \theta$ and $\cos \theta$? (6 points)

6. The pictured graph (below left) is the graph of $f(x)=A \sin (x+B)+C$ for some constants A, B, and C. Determine the values of A, B, and C. (10 points)
7. Let $f(x)=\frac{x}{x-2}$.
a) What is the domain of f ? (5 points)
b) Find the formula for $f^{-1}(x)$. (10 points)
c) What is the domain of f^{-1} ? (5 points)
d) How is the range of f related to the domain of f^{-1} ? (5 points)
8. Find the piecewise formula for the pictured function (below right). (10 points)

