Exam 1

22 September 1997
"Show enough work to justify your answers."

1. Let $f(x)=\sqrt{1+x}$ and $g(x)=\sin \left(x^{2}-1\right)$. Give simplified formulas for $(f \circ g)(x)$ and $(g \circ f)(x)$. (12 points)
2. If $f(x)=\frac{1}{x+2}$, give a formula for $f^{-1}(x)$. (13 points)
3. Determine the domain and range of $f(x)=\sqrt{9-x^{2}}$. You may use Mathematica or a graphing calculator to help you think, but give some explanation for your answer. When you finish using Mathematica, delete your function and clear the graph. (12 points)
4. Suppose f is a function defined for all real numbers such that $-5<f(x)<17$ for $0<x<5$. Determine if the following must be true, might be true, or cannot be true. (6 points each)
a) $|f(x)|<20$ for $0<x<5$
b) $f(8)=20$
5. Give a piece-wise formula for the pictured function. (13 points)
(Picture for problem $\# 15$, pg. 47, of OZ.)
6. The graph of a function f is shown (below left), along with a line cutting through the graph. Explain in your own words why $\frac{f(3)-f(1)}{2}$ is the slope of the line. (13 points)

7. Let $A(t)$ be the area of the pictured triangle (above right). Write a formula for $A(t)$ and draw the graph of $A(t)$ for $0<t<4$. (12 points)
8. A box without a top is constructed from a piece of cardboard, 12 inches by 18 inches, by cutting squares out of the corners and folding up the sides. Give a formula for the volume of the box as a function of the length of the sides of the removed squares. (13 points)
