
PROOF OF THE TRAPEZOID SUM ERROR ESTIMATE

Math 112

Theorem. Suppose that f : [a, b] → R is twice-differentiable. Let

Tn =
n∑

k=1

f(xk−1) + f(xk)
2

Δx =

(
f(x0)

2
+

n−1∑
k=1

f(xk) +
f(xn)

2

)
Δx,

where n is a positive integer, Δx = (b − a)/n, and xk = a + kΔx for k = 0, 1, . . .n. Let K2 be any
number such that |f ′′(x)| ≤ K2 for all x with a ≤ x ≤ b. Then

(1)

∣∣∣∣∣Tn −
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ K2(b − a)3

12n2
,

The proof uses a basic property of integration called monotonicity: If f, g : [a, b] → R are
integrable and f(x) ≤ g(x) for all x in [a, b], then

∫ b

a
f(x) dx ≤ ∫ b

a
g(x) dx. When f and g are

positive functions, this just says that the area under the graph of f is no greater than the area
under the graph of g.

Proof of the error estimate. First we will prove (1) for one interval, that is, for n = 1. Then we
will see how the general case follows from this special case.

When there is one interval, the error estimate becomes∣∣∣∣∣f(a) + f(b)
2

(b − a) −
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ K2(b − a)3

12
,

which is equivalent to

(2) −K2(b − a)3

12
≤ f(a) + f(b)

2
(b − a) −

∫ b

a

f(x) dx ≤ K2(b − a)3

12
.

To prove this, we introduce a new function E : [a, b] → R defined as

E(x) =
f(a) + f(x)

2
(x − a) −

∫ x

a

f(t) dt.

Note that E(x) is the difference between the integral
∫ x

a
f(t) dt and its Trapezoid sum approximation

with one interval. Thus E(x) is the error made by this approximation.
We have

E ′(x) =
f ′(x)

2
(x − a) +

f(a) + f(x)
2

− f(x) =
f ′(x)

2
(x − a) +

f(a) − f(x)
2



and

E ′′(x) =
f ′′(x)

2
(x − a) +

f ′(x)
2

− f ′(x)
2

=
f ′′(x)

2
(x − a).

The assumption about K2 is equivalent to −K2 ≤ f ′′(x) ≤ K2 for all x in [a, b]. It follows that

−K2

2
(x − a) ≤ E ′′(x) ≤ K2

2
(x− a)

for all x in [a, b]. Switching from x to t we have

−K2

2
(t − a) ≤ E ′′(t) ≤ K2

2
(t − a).

Integrating from a to x, the monotonicity property of integrals implies

−
∫ x

a

K2

2
(t − a) dt ≤

∫ x

a

E ′′(t) dt ≤
∫ x

a

K2

2
(t − a) dt,

which simplifies to

−K2

4
(x − a)2 ≤ E ′(x) − E ′(a) ≤ K2

4
(x − a)2.

From the formula for E ′ we see that E ′(a) = 0. Thus

−K2

4
K2(x − a)2 ≤ E ′(x) ≤ K2

4
(x − a)2

for all x in [a, b]. Applying the monotonicity property again, this time integrating from a to b, we
have

−
∫ b

a

K2

4
K2(x − a)2 dx ≤

∫ b

a

E ′(x) dx ≤
∫ b

a

K2

4
(x − a)2 dx,

which simplifies to

−K2

12
(b − a)3 ≤ E(b)− E(a) ≤ K2

12
(b − a)3.

From the formula for E we see that E(a) = 0. Thus

−K2

12
(b − a)3 ≤ E(b) ≤ K2

12
(b − a)3,

which is what we wanted to prove in (2).
To see that the general case follows from the case for one interval, we restate (2) for the subin-

terval [xk−1, xk]:

−K2(Δx)3

12
≤ f(xk−1) + f(xk)

2
Δx −

∫ xk

xk−1

f(x) dx ≤ K2(Δx)3

12
.

Since Δx = (b − a)/n, this becomes

−K2(b − a)3

12n3
≤ f(xk−1) + f(xk)

2
Δx −

∫ xk

xk−1

f(x) dx ≤ K2(b − a)3

12n3
.

Summing the three parts of this inequality as k goes from 1 to n we obtain

−K2(b − a)3

12n2
≤ Tn −

∫ b

a

f(x) dx ≤ K2(b − a)3

12n2
,

which is equivalent to (1). �



Extra Credit Problem. Modify this to get a proof for the midpoint sum error estimate.

Monotonicity and the Speed Limit Law. If you took Math 111 using the text by Oste-
bee & Zorn, you saw a property of derivatives they call the Speed Limit Law: If F : [a, b] → R is
differentiable and F ′(x) ≤ K for all x in [a, b], then F (b)− F (a) ≤ K(b − a). If F ′ is non-negative
and we think of x as time and F (x) as the position of a particle at time x, this says that if the
speed of the particle is no greater than K, then the distance F (b) − F (a) the particle goes during
the time interval [a, b] is no greater than K(b − a). More briefly (but less precise), the distance is
no greater than the maximum speed times time.

We can abbreviate the Speed Limit Law as

(3) F ′(x) ≤ K for x in [a, b] implies F (b) − F (a) ≤ K(b − a).

Suppose f : [a, b] → R is integrable and f(x) ≤ K for all x in [a, b]. The monotonicity property
of integrals implies

∫ b

a
f(x) dx ≤ ∫ b

a
K dx = K(b − a). We can abbreviate this special case of

monotonicity as

(4) f(x) ≤ K for x in [a, b] implies
∫ b

a

f(x) dx ≤ K(b − a).

These two properties, one for derivatives and one for integrals, are very intuitive, and for different
reasons. They are, of course, related by the Fundamental Theorem of Calculus: if f is integrable
and F ′ = f , then the two statements say the same thing.

If you take Math 333, you will see proofs of (3) and (4). Interestingly, they have separate proofs
and mathematicians think of them as different theorems, even though it seems like they are the
same just by letting f be F ′. While these properties are equivalent for functions you are used to
(differentiable functions with continuous derivatives), they are not equivalent in general. It turns
out that there are differentiable functions F for which f = F ′ is disontinuous, and so horribly
discontinuous that f is not integrable! Such a function is way beyond the scope of this handout,
but can be found on page 107, item 35, of the book Counterexamples in Analysis.
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