
SERIES REVIEW SHEET, SECTIONS 11.1 TO 11.5 OF OZ

Fill in the blanks and give the indicated examples, including reasons.

Don’t simply fill in the blanks and give the examples. Take this opportunity to really review this material.

The credit you get for simply filling in the blanks is nearly insignificant compared to the credit you will get

on the BSE and the next exam by really knowing this.

Geometric Series.

• A series is geometric if there is a number r such that .

• A geometric series converges if .

• A geometric series diverges if .

• When a geometric series converges, it converges to (or its sum is) , where a is .

• Give two examples of convergent geometric series and their sums, one with positive ratio and one with

negative ratio.

• Give an example of a divergent geometric series.



p-Series. A p-series is any multiple of
∞∑

n=1

1
np

or its tail, where p is a positive constant.

• A p-series converges if .

• A p-series diverges if .

• The series that divides convergent and divergent p-series is .

• Give three examples of p-series, one that converges and two that diverge.

Notation. The notation
∑∞

n an indicates a series in which the index n starts at some value. For purposes

of convergence or divergence, it doesn’t matter where the index starts.

nth Term Test. If lim
n→∞an is not zero, then

∑∞
n an .

• Note: This test cannot be used to conclude that a series converges, that is, if lim
n→∞an = 0 the series does

not have to converge.

• Give three examples of divergent series with terms that go to 0.



Comparison Test. Suppose 0 ≤ an ≤ bn for all sufficiently large n.

• If
∑∞

n bn converges, then .

• If
∑∞

n an diverges, then .

• If
∑∞

n an converges, then .

• If
∑∞

n bn diverges, then .

• Geometric and p-series are good to use for comparisons.

• Error estimates: If Rn =
∞∑

k=n+1

ak is the remainder for the smaller series and R̃n =
∞∑

k=n+1

bk is the

remainder for the larger series, then Rn < R̃n. This can be useful in determining a bound on the error,

Rn, for the smaller series if a bound on the error of the larger series, R̃n, can be obtained. The two main

cases are when the larger series is geometric or is a p-series. If
∑∞

n bn is geometric, you have an exact

formula for R̃n. If
∑∞

n bn is a p-series, then R̃n can be estimated by an easy improper integral.

• Give two examples of the use of the comparison test, one for a convergent series and one for a divergent

series. Give complete details.



Integral Test. Suppose a(x) is a positive, continuous, decreasing function and that an = a(n) when n is a

positive integer. Suppose that n = N is the first index for the series.

• If
∫ ∞

N a(x) dx converges, then
∑∞

n an .

• If
∫ ∞

N
a(x) dx diverges, then

∑∞
n an .

• Error estimate for the tail: Rn < .

The Comparison and Integral Tests may be used only on series of positive terms. (If you have a series of all

negative terms, you can use these tests on the negative of the series.)

Improved Ratio Test. Let L = lim
n→∞

∣∣∣an+1
an

∣∣∣.
• If L < 1, then

∑∞
n an .

• If L > 1, then
∑∞

n an .

• If L = 1, then .

• The Improved Ratio Test can be used on any series, regardless of the signs of the terms.

To illustrate how the test can fail, give two example series, one that converges and one that diverges. For

both series you should have L = 1. Give the details.

From your examples, you can probably see that the ratio test should not be used for p-series, or series closely

related to p-series.



Alternating Series Test. Consider
∑∞

n (−1)ncn, in which each cn is positive.

• If (1) c1 ≥ c2 ≥ c3 ≥ . . . and (2) lim
n→∞cn = 0, then

∑∞
n (−1)ncn .

• This test cannot be used to conclude that a series diverges.

• In particular, if lim
n→∞cn is not 0, the series diverges, but it’s not because of the AST. It diverges because

of .

• Conditions (1) and (2) are independent, that is, it’s possible for one of them to be true and the other

false. There are series in which (1) is false and (2) is true. Some of them converge and some of them

diverge. They have to be analyzed individually.

• Error estimate: If
∑∞

n (−1)ncn satisfies the AST and Rn is the remainder, then |Rn| < .

Since this is so easy, this is a very nice error estimate when it applies.

• Extra Credit: Give an example of a divergent alternating series in which the terms go to zero. Explain.

• Extra Credit: Give an example of a convergent alternating series for which the AST fails. Explain.



Absolute and Conditional Convergence.

• ∑∞
n |an| is what you get when you change all of the negative terms to positive (that is, you replace each

negative an with |an|, which is positive).

• If
∑∞

n |an| converges, so does , in which case we say that converges absolutely.

• It’s possible for
∑∞

n an to converge and for
∑∞

n |an| to diverge. In this case we say that
∑∞

n an converges

. Give two examples of series that do this with complete details, other than

the alternating harmonic series.

• Error estimates: If
∑∞

n an converges absolutely, then a remainder for
∑∞

n an is bounded by the cor-

responding remainder for
∑∞

n |an|. More precisely, if Rn =
∑∞

k=n+1 ak and R̃n =
∑∞

k=n+1 |ak|, then

|Rn| < R̃n.

• If
∑∞

n an is a convergent series of positive terms, then it automatically converges absolutely, since it’s

equal to
∑∞

n |an|.
• The categories of absolute convergence, conditional convergence, and divergence cover all series and they

are non-overlapping: every series is in exactly one category. There are no notions of conditional or absolute

divergence.

Power Series.

• To find the interval of convergence you should always use the test.

• When checking the endpoints of the interval of convergence you should never use the test.


