
CONVERGENCE TESTS FOR SERIES: COMMENTS AND PROOFS

PART I: THE COMPARISON AND INTEGRAL TESTS

Math 112

The convergence tests for series have nice intuitive reasons why they work, and these

are fairly easy to turn into rigorous proofs. In these notes we will prove the standard

convergence tests and give two tests that aren't in our text.

It's important to remember that the convergence or divergence of a series depends only

on what happens to some tail of the series|the inclusion or omission of a ¯nite number of

terms cannot change a convergent series into a divergent one or vice versa. (If the series

converges, the sum is a®ected, of course.) Because of this, we can let a little convenient

sloppiness into our notation. When it doesn't matter what the starting point is for a series,
P P P P1 1 1we can write a instead of a (or a or a ). More speci¯cally, thek k k kk=1 k=5 k=k0

P
notation a will always mean an in¯nite sum, and will only be used when the startingk

point for the sum is not important.

Slight Generalizations of the Comparison and Integral Tests

The observation above allows the use of the comparison test in cases where the terms

of the two series satisfy the appropriate inequality after some point, but perhaps not for

the ¯rst several terms. Here is the slightly more general comparison test.

P P
Theorem (Comparison Test). Let a and b be series. Suppose there is an indexk k

P P
K such that 0 · a · b for all k ¸ K. If b converges, so does a . Similarly, ifk k k k

P P
a diverges, so does b , and both sums are in¯nite.k k

The integral test has a similar modi¯cation.
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P
Theorem (Integral Test). Let a be a series. Suppose that K is a positive integerk

and that a : [K;1)! R is a continuous, decreasing function such that a = a(k) for eachk

RP 1integer k ¸ K . Then either the series a and the improper integral a(x) dx bothk K

converge, or they both diverge.

The point here is that the terms of the series and the function don't have to be related for

x and k less than K . In fact the function doesn't have to be continuous, decreasing, or even
R1de¯ned. Note that for K > 1, if the integral a(x) dx converges, we can conclude that
K

P1the series a converges (assuming the index for the series begins with 1). However,kk=1
R1

if the series converges, we cannot conclude that the integral a(x) dx converges without
1

additional information about the function a.

The Comparison Test. The comparison test is pretty intuitive. If a · b for all k ¸ K ,k k

P P P P1 1 1 1then it should be the case that a · b . If b is ¯nite, so is a .k k k kk=K k=K k=K k=K

P P1 1Similarly, if a is in¯nite, so is b . It's not hard to make this rigorous.k kk=K k=K

P Pn nProof of the Comparison Test. For n ¸ K , we have the inequality a · b be-k kk=K k=K

P Pn ntween the partial sums. Taking the limit asn! 1we have lim a · lim bk kk=K k=Kn!1 n!1P P1 1(which is the same as a · b ) provided that the limits exist (the limit1 isk kk=K k=K

allowed). These limits exist due to the following lemma about increasing sequences.

Lemma 1. Suppose c , n = 1; 2; 3; : : : , is an increasing sequence. If there is some numbern

L such that c · L for all n, then lim c exists as a ¯nite number. Otherwise lim c =1.n n n
n!1 n!1

There are two ways to think about this informally.

(1) If an increasing sequence is bounded above, it has to converge (meaning that the

limit is ¯nite).

(2) An increasing sequence has to have a limit (which may be in¯nite).

PnIn the proof of the comparison this lemma is applied to the partial sums A = an kk=K

Pnand B = b , which are increasing since the terms of these sums are non-negative.n kk=K

P P1 1By the lemma, the limits lim A = a and lim B = b exist (they mayn k n kk=K k=Kn!1 n!1
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be in¯nite), and then the reasoning preceding the lemma may be applied.

The lemma is pretty intuitive also, but its proof uses one of the fundamental properties

of the real numbers, and so it's worth looking at. (You can skip the rest of this section if

you're not interested.)

Proof of the lemma. Let's take care of the easy part ¯rst. Suppose that the sequence is

not bounded above. This means that for every number L, no matter how large, some term

of the sequence is larger than L, that is, there is some index N such that c > L. SinceN

the sequence is increasing, we have c ¸ c > L for all n ¸ N . Thus, for every numbern N

L, there is an index N such that c > L for all n ¸ N . This is exactly what lim c =1n n
n!1

means.

Now suppose that c · L for all n, that is L is an upper bound for the sequence. Nown

L is not the only upper bound|any number greater than L will also be an upper bound,

and some numbers less than L may also be upper bounds. Of these upper bounds, one

of them will be the smallest. Let ` be the least upper bound. I claim that ` is the limit

of the sequence. To see this, suppose that a < `. Since ` is the least upper bound of the

sequence, then a is not an upper bound. This means that some term of the sequence is

bigger than a, that is c > a for some index N . Since the sequence is increasing we haveN

that a < c · c · ` for every n ¸ N. Thus for any a < ` there is an integer N such thatN n

a < c · ` for all n ¸ N. This is (essentially) what lim c = ` means.n n
n!1

In general, lim c = ` means that for any open interval containing ,̀ the sequencen
n!1

eventually gets inside the interval, and stays inside. More precisely, if a and b are any

numbers such that a < ` < b, then there is an index N such that a < c < b for alln

integers n ¸ N. (You may have learned this as \for any ² > 0 there is an index N such

that `¡ ² < c < `+ ², or jc ¡ j̀ < ², for all n ¸ N ." This just makes the interval aroundn n

` symmetric, but that's not important.) In the lemma we only need to deal with numbers

less than ,̀ since ` is an upper bound for the sequence.

The fundamental property of the real numbers used in the lemma is the least upper
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bound property.

Least Upper Bound Property. A non-empty set of real numbers that is bounded above

has a least upper bound.

This property distinguishes the real numbers from the rational numbers. It is crucial to

many theorems in calculus and its generalization, analysis. A study of the least upper

bound property and its sometimes subtle uses are part of the content of Math 33 and 34.

Extra Credit Challenge Problems.

(1) Give an example of a non-empty set of rational numbers that is bounded above

but does not have a rational least upper bound.

(2) Find some calculus theorems that aren't true if you restrict yourself to rational

numbers.

The Integral Test. The integral test is also pretty clear once you see the right pictures

(see page 578 of OZ). These suggest that
Z1 11X X

a · a(x)dx · a :k k
Kk=K+1 k=K

R RP 1 11As with the comparison test, if a is ¯nite, so is a(x) dx. Similarly, if a(x) dxkk=K K K
P1is ¯nite, so is a . A rigorous proof involves partial sums and integrals over ¯nitekk=K

intervals.

Proof of the Integral Test. For K · k · x · k+ 1 we have a · a(x) · a , since bothk+1 k

the function and the sequence are decreasing. Integrating from k to k+ 1 yields a ·k+1

R Rk+1 k+10 0a(x) dx · a . If we let a = a and b = a(x) dx, we have a · b · a .k k+1 k k kk kk k
P P0Note that a and a are really the same series, their indices are just o®set by one.kk

P P
It then follows from the regular comparison test that a and b either both convergek k

or diverge.
RP 11Now what is b ? It should be a(x) dx. Indeed,kk=K K

Z Z Zn¡1 n¡1 11 n k+1X X X
a(x) dx = lim a(x)dx = lim a(x) dx = lim b = b :k k

n!1 n!1 n!1K K kk=K k=K k=K
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R1
There is one subtlety, however: a(x) dx isn't de¯ned as lim B , where B =n nK n!1R Rn X
a(x) dx; it's de¯ned as lim B(X), where B(X) = a(x) dx. The di®erence is thatK KX!1

n is an integer whereas X is a real number. These are slightly di®erent types of limits.

They are obviously related, however, and in this case they are equal. This follows from

two lemmas, the second of which is the analogue for functions of the lemma in the previous

section.

Lemma 2. Suppose that f : [0;1) ! R and that c = f (n) for all integers n ¸ 0. Ifn

lim f(x) exists, then so does lim c , and they are equal (they may both be in¯nite).n
x!1 n!1

Lemma 3. Suppose that f : [0;1) ! R is increasing. If there is some number L such

that f (x) · L for all x, then lim f (x) exists as a ¯nite number. Otherwise lim f (x) =1.
x!1 n!1

Extra Credit Challenge Problems. In problems 5, 6, and 7 explicit formulas are not neces-

sary. Good descriptions are adequate.

R P1 1(3) The integral test says that a(x) dx converges if and only if a converges.kk=KK

As with any \if and only if " statement, there are really two implications. Carefully

explain how the two lemmas are used in each of these implications. In particular,

both lemmas are needed for one direction, but only one is needed for the other.

(4) Give a careful proof of the two lemmas.

(5) Give an example of a sequence a , k = 0; 1; 2; : : : , and a continuous functionk

a : [0;1)! R with a = a(k) for each integer k ¸ 0 such that lim a exists, butk k
k!1

lim a(x) does not.
x!1 P1(6) Give an example of a series a of non-negative terms and a continuous func-kk=0

tion a : [0;1) ! R with a = a(k) for each integer k ¸ 0 such that the seriesk

R1
converges but the improper integral a(x) dx does not.

0
P1(7) Give an example of a series a of non-negative terms and a continuous func-kk=0

tion a : [0;1) ! R with a = a(k) for each integer k ¸ 0 such that the improperk

R1
integral a(x) dx converges but the series does not.

0

Robert Foote, October 1999
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