
CONVERGENCE TESTS FOR SERIES: COMMENTS AND PROOFS

PART IV: THE ALTERNATING SERIES TEST

Math 112

The convergence tests for series have nice intuitive reasons why they work, and these

are fairly easy to turn into rigorous proofs. In these notes we will prove the standard

convergence tests and give two tests that aren't in our text.

It's important to remember that the convergence or divergence of a series depends only

on what happens to some tail of the series|the inclusion or omission of a ¯nite number of

terms cannot change a convergent series into a divergent one or vice versa. (If the series

converges, the sum is a®ected, of course.) Because of this, we can let a little convenient

sloppiness into our notation. When it doesn't matter what the starting point is for a series,
P P P P1 1 1we can write a instead of a (or a or a ). More speci¯cally, thek k k kk=1 k=5 k=k0P

notation a will always mean an in¯nite sum, and will only be used when the startingk

point for the sum is not important.

The Alternating Series Test

P
Theorem (Alternating Series Test). Let a be a series. Suppose there is an indexk

P1K such that the tail a is alternating, andkk=K

(1) The sequence ja j, ja j, ja j, : : : is decreasing, andK K+1 K+2

(2) lim a = 0.k
k!1

Then the series converges.

P1Intuitive reason why this is true. Consider the partial sums of a . Each time akk=K

positive term is added the sum moves to the right; each time a negative term is added the

sum moves to the left. Because of (1), each time the sum moves, it moves less than it did

the previous time. Because of (2), the amount that it moves goes to zero. The partial

1



sums are moving back and forth, getting closer and closer to each other. It just has to

converge!

Proof. For convenience, let b = ja j for k ¸ K . Suppose that a > 0 when k is even andk k k

P P1 1 ka < 0 when k is odd. Then a = (¡1) b . (If a < 0 when k is even andk k k kk=K k=K

a > 0 when k is odd, we get an extra factor of ¡1, and the rest of the proof has to bek

modi¯ed slightly.)
Pn kLet s = (¡1) b . It will be convenient to keep track of the partial sums withn kk=K

even and odd indices separately. Let J be the smallest integer such that 2J ¸ K. Then

let c = s and d = s for j ¸ J . Now we make two observations. First,j 2j j 2j+1

d = d + b ¡ b ¸ d for all j ¸ J , since b ¸ b by (1).j j¡1 2j 2j+1 j¡1 2j+1 2j

Thus d , j = J; J + 1; : : : , is an increasing sequence. Similarly c , j = J; J + 1; : : : , isj j

decreasing. Second,

d = c ¡ b < c for all j ¸ J, since b > 0.j j 2j+1 j 2j+1

Since c · c , we have that d < c for all j ¸ J , that is the sequence d , j = J; J+ 1; : : : ,j J j J j

is bounded above. Similarly c , j = J; J + 1; : : : , is bounded below. By Lemma 1 inj

Part I of these notes (it really is a useful lemma!) both sequences converge. Let C =

lim c = lim s and D = lim d = lim s . Could these limits be di®erent? Wej 2j j 2j+1
j!1 j!1 j!1 j!1
have D ¡ C = lim s ¡ s = lim b = 0 by (2), and so D = C . Since the two2j+1 2j 2j+1

j!1 j!1
subsequences of partial sums both have the same limit, their common value is the limit of

the full sequence of partial sums, lim s = C = D, and so the series converges.n
n!1

Extra Credit Challenge Problems.

(1) Let c and d be as in the proof of the alternating series test. Prove that everyj j

term of the c-sequence is greater than every term of the d-sequence, that is, c > dj i

for all i; j ¸ J .
P

(2) Find an example of a divergent alternating series a for which lim a = 0.k k
k!1P

(3) Find an example of a convergent alternating series a for which no tail of thek

sequence ja j, ja j, ja j, : : : is decreasing.1 2 3
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