
CONVERGENCE TESTS FOR SERIES: COMMENTS AND PROOFS

PART II: THE RATIO TEST

Math 112

The convergence tests for series have nice intuitive reasons why they work, and these

are fairly easy to turn into rigorous proofs. In these notes we will prove the standard

convergence tests and give two tests that aren't in our text.

It's important to remember that the convergence or divergence of a series depends only

on what happens to some tail of the series|the inclusion or omission of a ¯nite number of

terms cannot change a convergent series into a divergent one or vice versa. (If the series

converges, the sum is a®ected, of course.) Because of this, we can let a little convenient

sloppiness into our notation. When it doesn't matter what the starting point is for a series,
P P P P1 1 1we can write a instead of a (or a or a ). More speci¯cally, thek k k kk=1 k=5 k=k0

P
notation a will always mean an in¯nite sum, and will only be used when the startingk

point for the sum is not important.

The Ratio Test

P ak+1Theorem (Ratio Test). Let a be a series of positive terms. Let ½ = lim ,k
k!1 ak

provided the limit exists. There are three possibilities.

(1) If 0 · ½ < 1, then the series converges.

(2) If ½ > 1, then the series diverges.

(3) If ½ = 1, then the test fails.

Intuitive reason why this is true. For large k we have a =a ¼ ½ or a ¼ ½a . If ak+1 k k+1 k k+1

were exactly equal to ½a , the series would be geometric with ratio ½. Thus some tail ofk

1



the series is nearly geometric with ratio ½, and so conclusions (1) and (2) are plausible.

Proof. Suppose ½ < 1. The idea is to compare the series with a geometric series with a ratio

slightly larger than ½. Let r be any number such that ½ < r < 1. Since lim a =a = ½,k+1 k
k!1

there is some index K such that a =a < r for all k ¸ K . Let b = a , and thenk+1 k K

2 jde¯ne b = b, b = br, b = br , and in general, b = br , which can be writtenK K+1 K+2 K+j

P P P1 1 1k¡K k¡K kas b = br for k ¸ K . Then b = br = br is a convergentk kk=K k=K k=0

geometric series. Note that we have

a = b = b ;K K

a < ra = rb = b ;K+1 K K+1

2a < ra < r b = b ;K+2 K+1 K+2

...

ja < ra < r b = b ;K+j K+j¡1 K+j

P
and so a · b for each k ¸K . Then a converges by the comparison test.k k k

The case when ½ > 1 is similar. Let r be a number such that 1 < r < ½. Since

lim a =a = ½, there is some index K such that a =a > r for all k ¸ K . We couldk+1 k k+1 k
k!1 P
compare a with a divergent geometric series, but there's something easier. For k ¸ Kk

we have a > ra > a , since r > 1. Thus the terms of the series are increasing. Hencek+1 k k

they don't go to zero, and so the series diverges.

To say that the test fails when ½ = 1 means that there are examples of series for which

½ = 1, some of which converge and some of which diverge. The proof consists of ¯nding

one of each, which you should do!

Robert Foote, October 1999
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