How Quickly Things Go to 0 as n goes to ∞

Math 112

Use this to help sharpen your intuition for the last problem on the Basic Skills Exam.

If $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are sequences with $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$, we can say that $(a_n)_{n=1}^{\infty}$ goes to zero faster than $(b_n)_{n=1}^{\infty}$ if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$.

 a_n Faster $1/n^n$ 1/n! $2^n/n!$ $3^n/n!$ $1/3^{n}$ $1/2^{n}$ Fast enough for $\sum a_n$ to converge $n/2^n$ $n^2/2^n$ $1/n^3$ $1/n^2$ $1/n^{3/2}$ 1/n $1/\sqrt{n}$ $1/\ln n$

Slower

Question: Where does $\frac{n!}{n^n}$ fit into this?