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A GEOMETRIC SOLUTION TO THE CAUCHY PROBLEM
FOR THE HOMOGENEOUS MONGE-AMPERE EQUATION

ROBERT L. FOOTE

Let  C R™ be open and connected, and let u:  — R be C?. The Hessian of
u is the symmetric tensor H(u) = D du, where D is the standard flat covariant
derivative on R". If X and Y are vectors at p € €, then H(u)(X,Y) =
(Dxdu)(Y) = X(du(Y)) — du(DxY'), where Y is extended in a smooth way to

a neighborhood of p. The homogeneous Monge-Ampere equation is
det H(u) =0.

If (zy,...,2y,) is an affine coordinate system on R", then H(u) = 3, ; u;; dz;®
dz;, and the Monge-Ampére equation becomes det(u;;) = 0. Indeed, the Hes-
sian and Monge-Ampére equation take this form in an affine coordinate system
on an arbitrary affine manifold, that is, a manifold with a covariant deriva-
tive for which the torsion and curvature vanish. What follows will make sense
in this more general setting, and so we will assume henceforth that 2 is an
open and connected subset of an affine manifold of dimension n and that D
denotes the covariant derivative. This affine manifold will be referred to, when
necessary, as the “ambient space.”!

In general, any equation involving the determinant of a Hessian is called a
Monge-Ampére equation. They arise frequently in differential geometry, par-
ticularly in problems of prescribing curvature and in variational problems in-
volving curvature. See the survey article by Yau in [Y], and [K]. The non-

"homogeneous Monge-Ampere equation det H(u) = f # 0 is elliptic or hyper-
bolic (in the nonlinear sense) depending on n and the sign of f, and has been
studied by many people using PDE techniques going back to Pogorelov [P]. The
homogeneous equation, on the other hand, is parabolic, and is best studied by
geometric techniques. This was done, for example by Hartman and Nirenberg
[HN]. For more references, the reader is referred to the bibliographies of [K],
and a number of the papers in [Y].
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Part of the research was conducted while the author was visiting the Pohang Institute of
Science and Technology. He would like to thank the members of the mathematics department
there for their hospitality during his visit.

1The problem we study is local (to a hypersurface) in nature, and so the theory is no
different than in R™. We choose the more general setting, however, to emphasize that our
results depend only on the affine structure of the ambient space, and not on the metric
structure of R™.
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The study of Monge-Ampére equations also arises in complex differential
geometry. The complex Monge-Ampere equation is det(u;;) = f, where u
and f are functions on a complex manifold and the derivatives are taken with
respect to a holomorphic coordinate system. Much work has been done in
this area by Stoll, Bedford, Burns, Taylor, Wong, Patrizio, Lempert, Yau, and
others. See the bibliographies of [Y], and [F1] for references.

In this paper we will study the Cauchy problem for the real homogeneous
Monge-Ampere equation det H(u) = 0. Let M be an orientable hypersurface
of the ambient space, let N be a non-vanishing transverse vector field along M,
and let p,9%: M — R. (The exact regularity of M, ¢, and ¢ will be specified
later.) The Cauchy problem we will study concerns existence and uniqueness
of functions u defined on a neighborhood of M that satisfy

(CP) { det H(u) = 0 on a neighborhood of M, and

u=¢ and du(N)=1% on M.

Solutions of (CP) need not exist, even for C* or C* data. In this paper we
will investigate generic, geometric conditions that will guarantee the existence
and uniqueness of solutions. The essence of our main result is the following;:

If HY(p) — v B is non-degenerate on TM ,‘ then there exists a unique solution
of (CP).

Here H V() denotes the Hessian of ¢ relative to an induced covariant derivative
on M, and B denotes a generalized second fundamental form that depends on
M and N. The non-degeneracy condition guarantees that rank H(u) =n — 1,
which in turn implies the existence of the so-called Monge-Ampere foliation.
The foliation can be constructed from the Cauchy data, resulting in an explicit
expression for the solution, which proves uniqueness. Existence follows with
the addition of a mild, generic condition, which amounts to a transversality
condition on the foliation. We will also see how the regularity of the Cauchy
data influences the regularity of the solution. We should note that the Cauchy
problem for the complex Monge-Ampére equation was studied by Bedford and
Burns in [BB], which motivated the present study.

In the next section we review the relevant geometry of the Monge-Ampere
foliation. The Cauchy problem is then addressed in the final section.

THE MONGE-AMPERE FOLIATION

Solutions of the homogeneous Monge-Ampeére equation det H(u) = 0 for
which the Hessian H(u) has constant rank enjoy a geometric property that will
be our main tool in solving the Cauchy problem.

THEOREM 1. Let u: @ — R be C? with rank H(u)=n—-k. Then there is
a foliation of ) by k-planes such that u is affine on each leaf of the foliation.
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This is well-known (see [HN]), but we give a simple, invariant proof for com-
pleteness.

PRrROOF. Let

F=kerH(u) = {X € TQ | Hu)(X,Y)=0forall Y € TQ}
—{X €TQ|Dxdu=0}.

This is a C?! distribution in TQ. Let X and Y be C? sections of F. Let Z be
an arbitrary C* vector field. Then

H(u)Z2,DxY)=(Dzdu)(DxY)=X ((Dzdu) (Y)) — (DxDzdu)(Y)
= —(DzDxdu)(Y) — (Dix,z7du)(Y) = 0,

since X,Y € F and there is no curvature. Similarly, H(u)(Z, Dy X )y=0. It
follows that DxY, Dy X, and [X,Y] = DxY — Dy X are sections of F. Thus F
is integrable and the leaves of the resulting foliation are totally geodesic, hence
k-planes (see [S], Vol. 3, pg. 32). In directions tangent to the leaves H (v) =0,
and so u is affine on each leaf. O

Clearly the domain of u can be made larger by extending the planes of the
foliation beyond € and by letting u continue to be affine on the planes. This
will be well-defined and will satisfy rank H(u) = n — k until the planes start
to intersect each other. In our application to the Cauchy problem, the rank
of H(u) will be n — 1, and so the leaves of the foliation will be affine lines. A
general study of the geometry of one-dimensional real Monge-Ampere foliations
was made by the author in [F2].

Tt is important to note that having u be affine on each leaf of some foliation of
Q) by planes is not a sufficient condition for u to satisfy.det H(u) = 0. Indeed,
let f: R — R be C2. Then the function u(z,y) = yf(z) is affine on egch
vertical line of R? and det H(u) = —(f'(z))?. The proof of the last theorem
shows that du must be parallel along the leaves of the foliation, which implies
that u is affine along the leaves and that ker du is parallel along the leaves. As
the next theorem shows, these two conditions are generically sufficient to imply
that u satisfies det H(u) = 0.

THEOREM 2. Let u: Q& — R be C2. Suppose that Q is foliated by k-planes
such that u is affine on each plane, ker du is parallel along each plane, and that
the foliation and ker du are transverse except possibly on a set with no intericr.
Then du is parallel on each plane. In particular, rank H(u) < n — k.

PROOF. Let X be tangent to a plane of the foliation. If Y is also tangent
to a plane of the foliation, then H(u)(X,Y’) = 0 since u is affine on the plane.
If Y € ker du, then the parallel extension of Y along the plane stays in ker du.
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Then H(u)(X,Y) = X(du(Y)) — du(DxY) = 0. At points where the foliation
and ker du are transverse, we have H(u)(X,Y) = 0 for all Y. This holds at
points where the transversality condition fails by continuity. [

The transversality condition is necessary. Consider u(z,y) = ;%7 defined

on R? except the origin. This is constant on the lines through the origin. Hence
it is affine on those lines and kerdu is parallel along those lines. However
det H(u) =0 only on y = +z.

Before turning to the solution of the Cauchy problem, it is instructive to
look at some examples. Let M C R™ be a submanifold (not necessarily a
hypersurface) and consider the distance function u: R® — R defined by u(z) =
dist(z, M). Near M, u is affine on lines orthogonal to M. The vector field grad u
1s a unit field pointing “directly away” from M and so is parallel along these
lines. This is equivalent to du being parallel along the lines, and so rank H(u) <
n — 1 (in particular, the kernel of H(u) contains the lines orthogonal to M).
Thus u satisfies the homogeneous Monge-Ampére equation on Q \ M, where
is some neighborhood of M. The size of  and the exact rank of H(u) depend
on the extrinsic geometry of M.

Two extreme cases of this are worth noting. First, if M is the origin, then
u(z) = |[z||. The leaves of the foliation are the lines through the origin. This
is, in some sense, the ‘standard solution’ of the homogeneous Monge-Ampére
equation.

-Second, suppose M is an oriented hypersurface and u is the signed distance
to M, that is, u is positive on one side of M and negative on the other. Then
u is a solution of the Cauchy problem

det H(u) = 0 on a neighborhood of M, and
v =0 and du(N)=1 on M,
where N is the unit normal field along M that gives the orientation.

SOLUTION OF THE CAUCHY PROBLEM

Let M, N, ¢, and ¢ be as in the statement of the Cauchy problem (CP). For
the moment, assume that these are smooth. The exact regularity requirements
will be considered in the last subsection. We use the decomposition TQ = TM @
(N) to define a generalized Weingarten map, a generalized second fundamental
form, a covariant derivative on TM, and a generalized Hessian of ¢. Given
X € TM, define WX and a(X) by

DxN = WX + a(X)N,

where WX is tangent to M. Then W: TM — TM is a tensor and « is a
1-form on M. Given X € TM and Y a vector field tangent to M, define VxY
and B(X,Y) by

DxY = VxY + B(X,Y)N,
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where VxVY is tangent to M. Define
HY(p)(X,Y) = (Vxdp)(Y) = X(dp(Y)) — dp(VxY).

It is easily verified that V is a covariant derivative on TM, and that B and
HV(p) are symmetric bilinear forms on TM. Note that if M C R"” and N is
a unit normal field along M, then W is the Weingarten map, a vanishes, B is
the second fundamental form of M, and H¥(y) is the induced Hessian on M.

Uniqueness and Existence. Asnoted above, the key to existence and unique-
ness of solutions to the Cauchy problem is the non-degeneracy of H V(¢) — 4 B.

THEOREM 3. If HY(¢) — ¢ B is non-degenerate on TM, then there exists at
most one smooth solution u of (CP).

PROOF. Suppose the solution of (CP) exists. Then rank H(u) <n —1. Let
X € TM and let Y be a vector field tangent to M. Then

Hu)X,N) = (Dxdu)(N) = X(du(N)) — du(DxN)
(1) =dp(X)—du (WX + a(X)N)
= dp(X) - dp(WX) — pa(X)
and
H(u)(X,Y) = (Dxdu)(Y) = X(du(Y)) — du(DxY)
= X(dp(Y)) — du (VxY + B(X,Y) N)
= X(dp(Y)) — dp(VxY) - ¥B(X,Y)
= HY(¢)(X,Y) - $B(X,Y).
The non-degeneracy of HY(¢) — ¢ B implies that rank H(u) > n — 1, and
"so rank H(u) = n — 1, and this must hold on a neighborhood of M. By
Theorem 1, this neighborhood admits a Monge-Ampere foliation by lines. The
non-degeneracy condition implies that the lines of the foliation are transverse to
M, and so at each point of M there is a unique vector Z € TM such that Z+ N

is tangent to the foliation. For X € TM we then have H(u)(X,Z + N) = 0,
that is,

2  (HY)-¥B) (X, Z) = dp(WX) + pa(X) — dip(X).

We have du(Z + N) - do(Z) + . Since u is affine along the leaves of the
foliation, we get an explicit formula for u. If p € M, then

(3) u(p+ r(Np + Zp)) = @(p) + r(dep(Zp) + ¥(p)),

which uniquely determines u in a neighborhood of M. [J
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NOTE. In the last equation we denote the exponential map by addition,
exp,(rNp) = p + rNp, as we would in R™.

The next theorem provides the existence of a solution to the Cauchy problem
in a special case. If the leaves of the Monge-Ampere foliation are the lines
determined by N, then dy(X)—dp(WX)—va(X) =0 by (1). The existence of
a solution follows from this last condition, provided an additional assumption is
made about 1, which guarantees the transversality requirement of Theorem 2.

THEOREM 4. Suppose d(X)—dp(WX)—va(X) =0 forall X € TM, and
that the subset of M on which v vanishes has no interior. Then u(p+rN,) =
¢(p) + r¢(p) defines a solution to (CP) on a neighborhood of M, and du is
parallel along the lines determined by N.

PROOF. Let 2 be a neighborhood of M of the form {p+rN, |p € M,|r| <
é(p)}, where € is some positive, continuous function on M. Clearly u, as defined
above, satisfies the Cauchy data and is affine along the lines determined by N.
We need to show that ker du is parallel along these lines.

Extend N to be parallel along the lines determined by N, that isif p € M
and ¢ = p+ rN, for some r € R, then N, = N,. (Since  is an affine manifold
and our arguments take place in a neighborhood of one of the lines, we can freely
identify vectors in one tangent space with those in another. Computations can
be made as they would be in R™.)

‘Fixpe M,r €R,and ¢ =p+rN, € 2. We have dug(N) = ¥(p). Let X €
T,M, and let v be a curve in M such that X = 9'(0). If 5(t) = 7(t) + r Ny,
then X = %'(0) = X +r (WX + a (X)) N, thought of as a vector in T;Q2. Note
that as X varies over T, M, the vector X varies over an (n — 1)-dimensional
subspace of T{} that is transverse to N. We have

dug(®) = ] 0 (0 +r0) = Z| (000) o)
= dipy(X) + ra(X).

Let b € R and suppose X + bN € ker dug. Then
(4) dipg(X) + rdiy(X) + bib(p) = 0.

Thinking of 3 _
X+bWN=(X+rWX)+(b+ra(X))N

as a vector in Tp{) and using the hypothesis and (4), we have
du, (X +rWX) + (b+ ra(X))N) = dpp(X + rWX) +(b+ra(X))b(p) = 0.
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It follows that ker dug is parallel to ker du,.

When ¢(p) # 0, then N, and kerdu, are transverse, and so det H(u) = 0
by Theorem 2. [

Next we consider the existence of a solution u to the Cauchy problem under
the more general condition of the non-degeneracy of H () — ¥ B. Following
the proof of Theorem 3, the leaves of the foliation will be the lines determined
by N + Z, where Z is the vector field tangent to M that satisfies (2). In
this direction the solution will satisfy du(N + Z) = v + dyp(Z), and so the
condition that will imply the transversality requirement is the non-vanishing

of ¢ = ¢ + do(Z).

THEOREM 5. Suppose that HY(p)—1 B is non-degenerate on TM. Let Z be

the vector field defined by (2), and suppose the function ¥ = +dp(Z) vanishes
on a set without interior. Then (3) defines a solution of the Cauchy problem
(CP) on a neighborhood of M, and du is parallel along the lines determined
by N + Z. . ' :

PROOF. Let N = N + Z and ) = ¢ + dp(Z). 1t is easily computed that
DxN = WX + &X)N, where

WX =WX4+VxZ—(a(X)+B(X,2))Z and &X)=a(X)+B(X,2).
It follows easily that
dp(X) - dp(WX) ~ $a(X) = 0

.for all X € TM. The result then follows from the previous theorem. [

The special case when ¢ vanishes is worth singling out. The non-degeneracy
condition becomes a curvature condition.

COROLLARY. Suppose that M has non-zero Gaussian curvature (equiv-
alently, the second fundamental form B is non-degenerate) and v is non-
vanishing. Then there exists a unique solution to the Cauchy problem

{ det H(u) = 0 on a neighborhood of M, and
u=0 and du(N)=1v% on M.

PROOF. The condition (2) on Z reduces to Y B(X, Z) = dp(X) — pa(X),
and the result follows from Theorems 3 and 5. [
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REMARK. When M C R" and N is unit normal along M, we get an inter-
esting explicit formula for Z under the conditions of the previous corollary. In
this case a = 0, and B and W are related by B(X,Z) = — (X,WZ). We have

(X, WZ) = —(1/¢)dp(X).

The curvature condition implies that W is invertible, and so this is equivalent

to '
Z = —(1/4)W " (grad ) = —W ! (grad log ).

Regularity. Finally, we consider the regularity of the solutions. Suppose M
and ¢ are C¥, and N and ¢ are C*-1. In order to define W, a, V, B, and
HY(p), we need k > 2. The proof of the uniqueness theorem, Theorem 3, goes
through assuming u is C* and k > 3. (The extra degree of differentiability is
needed to apply Theorem 1.)

In the first existence theorem, Theorem 4, if k > 2, then N is at least C?,
and the implicit function theorem applied to u(p+rN,) = ¢(p)+r4¥(p) implies
that w is C¥~1. In Theorem 5, one degree of differentiability is lost. The
quantities HY(¢), B, W, and a are C¥~2, and hence so are Z, N, and . We
need k > 3 to apply the implicit function theorem to (3) in this case, and we
get that u is C*~2. The surprising fact is that we actually get one more degree
of regularity for u than is expected in these theorems.

THEOREM 6. Suppose that M and ¢ are C*, and N and ¢ are C*~1. In
Theorem 4, if k > 2, then u is C* at points where ¥ # 0. In Theorem 5, if
k > 3, then u is C*~! at points where ¥ # 0.

PROOF. In the proof of Theorem 4, we have that X + N € kerdu along
M, X € TM, if and only if dp(X) + ¢ = 0. It follows that ker du is a C*F~1
distribution along M. Since N in C*~! and kerdu is parallel along the lines
determined by N, it follows that ker du is a C*~! distribution on 2. Define
the projection P: 0 — M by letting P(q) = p if ¢ = p + rN, for some r € R.
Then P is C*~1. If X is a smooth vector field on 2, then X = Y + fN is
a C*~1 decomposition, where Y € kerdu and f:  — R. Then the function
du(X) = f( o P) is C¥~1. It follows that du is C*¥~*, and so u is C*.

The statement for Theorem 5 follows by considering N and ¢ in place of N
and ¥. 0O

An important special case is the distance function.

COROLLARY. If M C R" is C*, k > 2, then the signed distance function
given by u(p + rN,) = r, where N is a unit normal along M, is C* in a
neighborhood of M.

Clearly u is C*~1. The extra degree of differentiability is surprising. This
result also holds for the unsigned distance function on Q \ M when M is a
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submanifold of arbitrary dimension. For direct proofs of this, see [F3] and its
references.
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