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The importance of accurately accounting for all Coulombic forces in molecular dynamics simulations of
water at interfaces is demonstrated by comparing the Ewald summation technique with various spherical
truncation methods. The increased structure induced by truncation methods at 12 Å leads to water/vapor
surface tensions and surface potentials that are respectively 50% and 100% greater than obtained with Ewald.
The orientational polarization of water at the lipid/water interface is analyzed within the Marcelja-Radic
theory of the hydration force, yielding decay parameters of 2.6 and 1.8 Å for spherical truncation and Ewald,
respectively, as compared with 1.7-2.1 Å obtained from experiment. Bulk water transport properties such
as the viscosity and diffusion constants differ by as much as 100% between simulations carried out with and
without truncation; this may be related to ordering in the neighborhood of the cutoff radius. The diffusion
constant calculated from the Ewald simulation is significantly further from experiment than the cutoff result,
pointing out the need to reparametrize the TIP3P water model for use with Ewald summation. Appendices
describe a method for carrying out the Ewald summation on a distributed memory parallel computer and
other computational details relevant when simulating large systems.

I. Introduction

The calculation of the electrostatic energy of a periodic
system, as is required in a molecular dynamics (MD) simulation
using periodic boundary conditions, involves a double summa-
tion over theN charge sites (atoms) and their infinite number
of periodic images. For point charges{qn} at position{rn} in
an orthogonal unit cell of lengthsLx, Ly, andLz, the potential
energy is

where

is the lattice vector and the prime denotes the omission of self-
energy terms, i.e., where|rbij + ab| ) 0. (For molecular systems,
pairs separated by one or two bonds are also excluded.)
As will be reviewed in the following section, eq 1 can be

evaluated with good accuracy and efficiency using the Ewald
(EW) summation technique. Nevertheless, because this is
typically the most time-consuming part of an MD simulation,
two other methods have been extensively employed to avoid
the exhaustive summation of charge: (i) minimum image (MI)

boundary conditions, where only pairs separated by a distance
less than the simulation cell length are included; (ii) spherical
boundary conditions (SBC), where either the potential or the
force is truncated (abruptly or by employing a termination
function) at a separation distance,rc, typically 8-14 Å. Early
simulation studies primarily concerned uncharged Lennard-Jones
fluids, which were adequately treated using MI or SBC even
when periodic boundary conditions (PBC) were employed. After
artifacts due to truncation of charges were discovered in
simulations of dipolar fluids, the Ewald method was largely
adopted in the 1970s by liquid-state physicists. In contrast,
issues involving Ewald summation were not even relevant for
much of the biophysics community: because of the huge amount
of solvent that must be included when modeling a biopolymer
(e.g., protein or DNA) in PBC, until relatively recently, most
simulations were carried out in vacuum, in a “droplet” of water,
or with stochastic boundary conditions. As a result, the large
biopolymer simulation programs evolved using SBC and
continue to support the method even as reports of difficulties
accumulate.1-8 A review of the various boundary conditions
and their effects on molecular simulations is found in ref 9.
The principal artifact associated with truncation of electro-

static forces in simulations is that of increased structure as
compared with Ewald simulations. In simulations of polar
fluids, increased orientational structure is observed,10 dielectric
properties are severely changed,11 and both translational and
rotational motion are decreased.12 The effect is even moreX Abstract published inAdVance ACS Abstracts,September 15, 1996.
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severe when simulating charged species; e.g., the radial distribu-
tion of electrolytes shows severe distortion in the vicinity of
the cutoff.9 The present study primarily concerns interfacial
and transport properties, which will be shown to be especially
sensitive to cutoff of the potential. In the next section we briefly
describe the Ewald summation technique, and in three subse-
quent sections we compare results obtained with SBC and Ewald
sums for bulk water, water at its vapor interface, and a hydrated
lipid bilayer. Appendices discuss some technical details of MD
simulations utilizing the Ewald summation, including an efficient
parallelization scheme for use with distributed memory comput-
ers.

II. Ewald Summation Algorithm

The Ewald summation technique involves splitting the very
slowly converging eq 1 into two more rapidly convergent sums.
Briefly, two Gaussian charge distributions of opposite sign and
arbitrary variance proportional toκ-2 are added at each point
source of charge in the system. The first, which is opposite in
sign to the original charge site, is denoted the screening
distribution: when it is summed in real space along with the
original charge distribution, the electrostatic interactions between
charge sites become short ranged. The second, denoted the
canceling distribution, maintains electroneutrality. It is summed
in reciprocal space, and the total is then transformed back into
real space. The net electrostatic potential energy is written

wherekB is the reciprocal space lattice vector

and erfc is the complementary error function. The first and
third terms in eq 3 correspond to the real space and reciprocal
space summations, respectively. Through the use of trigono-
metric identities, the double sum over atoms in the reciprocal
space term can be converted to a single sum.13 The real space
summation includes atom pairs separated by a distance less than
rc. The reciprocal space sum is truncated at an ellipsoidal
boundary (kx

max,ky
max,kz

max). Both with κ determining the rela-
tive rates of convergence. (Increasingκ accelerates convergence
of the real space sum but necessitates the inclusion of more
terms in the reciprocal space sum.) The second term in eq 3
corrects for the self-energy of the canceling charge. The last
term is a surface correction term that depends on the dipole
moment of the unit cell,Db, and the dielectric constant of the
surrounding medium,ε′.14 This term vanishes if one assumes
that the entire system is surrounded by a conductor, i.e.,ε′ )
∞. The effect of the surface term on simulations of aqueous
electrolytes is discussed extensively in ref 15. For a more
general discussion of the Ewald summation and references to
its mathematical details, see ref 16.
In general, the computational expense in evaluating the

electrostatic energy via eq 3 is of orderN2, though optimizing

κ can lead to an efficiency of orderN3/2.17 Recently developed
algorithms utilizing interpolation18,19 methods or fast Fourier
transforms20 to calculate the reciprocal space sum have an
efficiency of orderN ln N. The CHARMM (Chemistry at
HARvard Molecular Mechanics)21 implementation of the Ewald
sums algorithm employed for the present work is based on the
code given in refs 13 and 16 and is described further in
Appendices A and B.

III. Simulation Details

All simulations were carried out with the CHARMM simula-
tion package using the potential energy parameter set
PARM22b4b.22 A modified TIP3P water model23was used with
the bonds and angle held rigidly with the SHAKE algorithm.24

Three-dimensional periodic boundary conditions were employed
for all systems. Simulations of bulk water and of water/vapor
interfaces were carried out at constant particle number, volume,
and energy (NVE) at a temperature of 293 K. Lipid bilayer
simulations were carried out at constant normal pressure, surface
area, and temperature (NPAT),25 i.e., the length of the simulation
cell in the direction normal to the interface (assumed to bez)
varied to maintain a hydrostatic pressure of 1 atm. All
simulations employed the leapfrog Verlet algorithm with a time
step of 1 fs. Coordinate sets were saved every 100 fs for
subsequent analysis.
The bulk water and water/vapor systems consisted of 560

water molecules. The periodic cell for the bulk water simula-
tions was cubic with length 25.6 Å, corresponding to the
experimental density of water at the simulation temperature.
Ten separate 800 ps trajectories, five with Ewald and five with
a 12 Å shifted potential, were generated; this relatively large
amount of data was required to distinguish the two cutoff
methods with high statistical certainty. In the water/vapor
systems, thex andy dimensions were 25.6 Å, but the cell length
normal to the interface (thez direction) was 75 Å. With this
large region of vacuum above the water surface, the system is
essentially periodic in only two dimensions though molecules
which evaporate do pass through to the opposite side of the
slab. Each water/vapor simulation was run for 300 ps. The
lipid bilayer simulation cell contained 72 molecules of dipalmi-
toylphosphatidylcholine (DPPC) and 2511 water molecules.
(Further details of the system and the SBC simulation can be
found in ref 26.) The bilayer simulation using EW is a
continuation of the SBC lipid simulation. The lipid simulations
were carried out at a temperature of 323 K, corresponding to
the liquid crystalline (LR) state.
Simulations of water/vapor were performed using three

spherical truncation methods: potential shifting (SH), where
the electrostatic potential energy between each pair is scaled
by (1 - r2/rc2)2; force switching (FSW), where the force is
smoothly truncated to zero at the cutoff distance over a given
range (2 Å in our simulations); and force shifting (FSH), where
a constant is added to the force so that the potential is zero at
the cutoff distance. Details of each of these methods are
reviewed in ref 6. Cutoff distances of 12, 15, and 18 Å were
tested for the truncation methods. The SBC simulations of bulk
water and lipid bilayers were carried out with the 12 Å SH
potential. Ewald sums were employed for simulations of each
system usingrc ) 12 Å, κ ) 0.210 Å-1, andkmax ) kx

max )
ky
max ) kz

max ) 4. For the interfacial systems, which were in
orthorhombic rather than cubic simulation cells, the number of
wavevectors in the direction normal to the interface (kz

max) 11
for water/vapor and 9 for water/lipid) was increased over those
parallel (kx

max) ky
max) 4 for water/vapor and 6 for water/lipid)

to obtain accurate energies and forces.27 These parameters led
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to relative force errors of order 10-4. (The calculation is
described in Appendix C.) The Lennard-Jones interactions were
truncated at the cutoff distance with a smooth switching of the
potential over a 2 Å region.

IV. Properties of Bulk Water

Liquid water is often used as a model system for testing the
force truncation methods of biomolecular simulation. The
choice is natural not only because many simulations are carried
out in water but also because its properties tend to be very
sensitive to any changes in the potential. This section describes
results for the self-diffusion constant, viscosity, oxygen-oxygen
radial distribution function, and dielectric constant of water.
The self-diffusion constant,D, was obtained from the final

400 ps of each simulation trajectory using the Einstein relation16

whereri(t) is the position of theith water molecule at timet
and the brackets denote the time average over the simulation
length. At each value oft, the average and standard deviation
of the displacement was determined from the 560 water
molecules. The diffusion constant was then calculated from a
fit in the region from 1.0 to 100.0 ps using the standard
deviations as weights.28 The use of a weighted fit makes the
choice of the upper limit of the fitting interval largely irrelevant
because the standard deviations of the long time points are very
much larger than those at short time. The choice of the lower
limit is somewhat arbitrary: it must be large enough to eliminate
short time rattling motions but should also be kept as small as
possible because the accuracy of the dependent variables
deteriorates as time increases. The calculated diffusion constants
are (3.9( 0.2) × 10-5 cm2 s-1 for SBC and (5.1( 0.1) ×
10-5 cm2/s for EW; standard errors were estimated from the
standard deviation among the five independent trajectories
(Table 1). Both methods overestimate the experimental value
of 3.0× 10-5 cm2 s-1.
The viscosity was calculated from the integral of the pressure

autocorrelation function via the Green-Kubo relation29

wherePRâ are the off-diagonal elements of the instantaneous
pressure tensor (xy, xz, or yz). The pressure was saved every 2
fs during the simulation and the autocorrelation function
evaluated (Figure 1a). The cumulative integral of the correlation
function is shown in Figure 1b for integration times up to 1.0
ps. A difficulty in calculating viscosities from the Green-Kubo
relation is the choice of upper integration limit because the long
time tail of the correlation function contains a large degree of
uncertainty.

Alternatively, the viscosity can be determined from the
Einstein-Helfand relation30,31

To calculate the viscosities from the simulation, the right-hand
side of eq 7 was calculated for each off-diagonal element and
then averaged, the standard deviation among the three elements
was determined, and the average in the intervalt ) 1-100 ps
was fitted to eq 7 using the standard deviations as weights (as
described in the calculation of the diffusion constant). Table 1
reports the average values and the standard deviations of the
viscosity obtained from the 10 different simulations. The
viscosities from the simulations employing spherical truncation
(0.62( 0.04 cP) are approximately twice as large as those from
the Ewald simulations (0.35( 0.02 cP) and are closer to
experiment (1.0 cP). The viscosities as determined from the
Green-Kubo relation (Figure 1b), though not as precise, are in
qualitative agreement with the Einstein-Helfand results. The
observation that the diffusion constant decreased while the
viscosity increased is in accord with the Stokes-Einstein
relation.

Figure 2 shows the oxygen-oxygen radial distribution
function, g(r), as evaluated from the simulations. Good
agreement is found between the force treatments for the first
few water shells (r≈ 8Å), but at greater distances the truncation
method induces ordering into the fluid where the EWg(r) is
unity. As is clear from the inset of Figure 2, the differences
between the distribution functions are statistically significant.
The absence of the artifactual structuring in the EW simulations
is consistent with the decrease in viscosity and the increase in
diffusion constant over that observed in the SBC simulations.

The increased fluid structure in the region of the cutoff also
leads to unphysical values of the dielectric constant when SBC
are used.11,15 The dielectric constant of the water model was

TABLE 1: Viscosity As Calculated from Eq 7 and the
Diffusion Constant (Eq 5) for Each of the Bulk Water
Simulationsa

viscosity (cP) D (10-5 cm2 s-1)

simulation 12 Å SH EW 12 Å SH EW

1 0.70 0.37 4.01 5.03
2 0.52 0.41 3.96 5.10
3 0.54 0.30 3.77 5.18
4 0.68 0.33 3.75 5.15
5 0.66 0.38 3.93 4.99
av 0.62 0.35 3.88 5.09
std dev 0.08 0.04 0.17 0.08

a The experimental values are 1.0 cP and 3.0× 10-5 cm2 s-1.

〈|ri(t) - ri(0)|2〉 ) 6Dt (5)

η ) lim
tf∞

V
kBT

∫0t〈PRâ(0)PRâ(t′)〉 dt′ (6)

Figure 1. (a) Normalized pressure autocorrelation function for the
Ewald (solid line) and SH (dashed line) truncation methods. (b)
Viscosity as calculated from the cumulative integral of the pressure
autocorrelation functions in (a).

2ηkT
V
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determined from the EW simulations using the relation16

whereµi is the dipole moment of water. A value of 109.5 was
calculated compared to the experimental value of 80.4 at 293
K.32

V. Properties of the Water/Vapor Interface

The water/vapor interface has been studied by many workers
using different water models and truncation schemes for the
handling of Coulombic interactions25,27,33(see ref 33 for a review
of the literature). We previously observed that the water/vapor
interface was more sensitive to the choice of truncation radius
than the liquid/liquid interface.25 Thus, this system can serve
as a sensitive test of the simulation results on force truncation
method as we show for surface tension, configurational polar-
ization, and surface potential.
For each truncation method, the interfacial tension was

calculated during the simulation from the pressure tensor of the
system,25

and is listed in Table 2. Fifty percent differences are observed
between cutoff schemes even though the truncation lengths are
longer than has typically been used for simulations on this
system. Inclusion of all electrostatic interactions through the
Ewald summation leads to a surface tension (52.7 dyn/cm)
which is roughly 25% lower than the experimental values (72.8
dyn/cm). Using the SPC/E water model and Ewald sums,
Alejandre et al. calculated a surface tension at 328 K which is
in excellent agreement with experiment.27 The density of the
SPC/E water model at atmospheric pressure is also in better
agreement with experiment than the TIP3P, possibly explaining

the discrepancy between the experimental surface tension and
that of the TIP3P model.

A particularly useful quantity that describes the atomic level
structure of the water/vapor interface is the orientation of the
water molecule dipole moment in the region of the interface.
(In the bulk the distribution is uniform.) The product of the
water density and the averagezcomponent of the dipole moment
is plotted as a function of position along thezaxis in Figure 3a
for the EW simulation. The center of the water slab is located
at z) 0, and the interfaces are approximately atz ) (15 Å.
Analysis of the distribution of dipole vectors near the interface
shows that the preferred orientation is parallel to the interface,
similar to previous observations.25,33 The distribution, however,
is slightly skewed with the hydrogens pointed slightly into the
vapor in the outermost layer and then more strongly oriented
into the bulk water in the remainder of the interfacial region,
leading to small net dipole moments. As shown in Figure 3,
this distribution is extremely sensitive to the treatment of the
long-range electrostatic force. In contrast to the EW simulation,
where the perturbation extends to only two molecular diameters,
the SBC simulations show ordering across the entire slab. The
effect of increasing the cutoff radius with the shifted potential
(which gave results closest to EW for this property) is illustrated
in Figure 4, indicating that the artificial ordering due to
truncation is reduced but clearly not eliminated even at 18 Å.

The nonuniform distribution of dipoles at the water/vapor
interface leads to a mean electrostatic potential difference
between liquid and vapor, often referred to as the surface
potential.34 The electrostatic potential along the interface normal

Figure 2. Oxygen-oxygen radial distribution function. The solid and
dashed lines are the average of four EW and SH simulations,
respectively. The inset shows the results of the individual simulations,
the empty and filled symbols are the EW and SH results, respectively.

TABLE 2: Water/Vapor Surface Tension as a Function of
Long-Range Force Treatmenta

truncation method γ (dyn/cm) truncation method γ (dyn/cm)

Ewald sum 52.7( 1.5 SH (12 Å) 70.2( 1.7
FSH (12 Å) 52.5( 1.3 SH (15 Å) 60.2( 1.7
FSW (10-12 Å) 43.8( 2.1 SH (18 Å) 54.6( 1.6

a The surface tension was calculated from eq 9, details on the
calculation of the error bars are found in ref 25. The experimental
value is 72.8 dyn/cm.

ε ) 1+
4π

3VkBT(〈|∑i)1N µi
2|〉 - 〈|∑

i)1

N

µi|〉2) (8)

γ ) 1/2〈Lz(Pzz- 1/2(Pxx + Pyy))〉 (9)

Figure 3. Density-weighted water polarization profiles for the water/
vapor interface using different treatments of the electrostatic force: (a)
EW, (b) 12 Å SH, (c) 12 Å FSH, and (d) 10-12 Å FSW
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was calculated by double integration of Poisson’s equation,

after binning the time-averaged charge density (Fc) as a function
of z. To accomplish this, we divided the simulation cell into
regions of 0.5 Å thickness and calculated the charge density in
each slab averaged over the simulation length. The potential
profile evaluated from the EW simulation is shown in Figure
5a (solid line). A potential drop of approximately 500 mV is
seen upon moving from the vapor into the liquid; it occurs over
the same 6 Å region where the density profile is changing.
Figure 5a shows the electrostatic potential profile calculated with
various truncation methods, and Figure 5b shows the effect of
increasing cutoff radius with the potential shift method. The
results are analogous to those for the dipole distribution, i.e.,
the potential drop occurs over a much longer range when the
forces are truncated, leading to surface potentials which are up
to 100% larger than the EW result. The region between 6 and
12 Å from the center reveals another difference between the
EW and SBC simulations: the potential is nonmonotonic in
the EW simulation. This indicates a reversal of the sign of the
electric field, a result which is not reproduced by any of the

SBC simulations. Additionally, the simulation using Ewald
sums alone had a region of zero electric field and no ordered
water at the center (Figure 3a); i.e. the two interfaces are
interacting in the cutoff simulations. This is a serious consid-
eration since one is typically trying to model two isolated
interfaces with this geometry.

VI. Properties of the Water/Lipid Interface

After a brief review of the hydration force, results on
polarization, potential drop, and surface tension of the bilayer/
water interface are presented.
Hydration Force: Background. The study of phospholipid

bilayers is a very active area of macromolecular simulation.35

Primarily this is due to the importance of these systems as
models for cell membranes, but they also have been studied
both experimentally36 and theoretically37 by workers interested
in the forces acting between hydrated surfaces. The existence
of a hydration component in the force between solid surfaces
was postulated following the observation of an anomalous
exponential repulsion between mica sheets separated by only a
few water diameters. These same types of measurements have
been made for lipid bilayers at various temperatures and
compositions.36 A model for what is now commonly termed
the hydration force was proposed by Marcelja and Radic, who
assumed that water molecules are structured by the presence of
the surface, with the ordering described by a parameterη. The
free energy density of the system is given by a Landau expansion
in η

wherez is the direction normal to the interface anda andc are
undetermined coefficients. With symmetric interfaces each a
distanceh/2 from the center, the minimization of the free energy
(eq 11) leads to a differential equation

which subject to the relevant boundary conditions has solution

whereλ ) (c/a)1/2. With the free energy given by eq 11 and
the order parameter described by eq 13, the repulsive hydration
force between the surfaces is predicted to exponentially decay
with decay lengthλ. Values ofλ equal to 1.7 and 2.1 Å for LR
phase DPPC bilayers have been reported by McIntosh and
Simon38 and Rand and Parsegian,36 respectively; the interpreta-
tion of force measurements and subsequent estimation ofλ for
lipid bilayers is complicated by the presence of undulations,
which accounts for the slight discrepancy in these values.
Though the physical observable corresponding to the order

parameter in the original Marcelja-Radic theory was not
specified, later work related this parameter to the polarization
of water.39 Kjellander and Marcelja40 and Berkowitz and
Raghavan41 subsequently investigated the orientational polariza-
tion of water in MD simulations of model lipid bilayers,
calculating the order parameter as

whereθ is the angle between the water dipole and the normal
to the interface. An oscillatory decay was observed in both
studies, implying that the water polarization was not the relevant

Figure 4. Density-weighted water polarization profiles for the water/
vapor interface using the SH function with cutoff radius of 12 Å (solid),
15 Å (long dash), and 18 Å (short dash).

Figure 5. Electrostatic potential profile, as calculated from eq 10, for
the water/vapor interface: (a) using EW (solid), 12 Å SH (long dash),
12 Å FSH (medium dash), and 10-12 Å FSW (short dash); (b) using
the SH function with cutoff distances of 12 Å (long dash), 15 Å
(medium dash), and 18 Å (short dash). The EW result is repeated in
(b) for comparison purposes.

φ(z) - φ(0)) - 4π
ε0
∫0∞dz′∫0z′dz′′ Fc(z′′) (10)

f ) f0 + aη2 + c(∂η/∂z)2 (11)

d2 η(z)

dz2
- a
c
η(z) ) 0 (12)

η(z) ) η0

sinh(z/λ)
sinh(h/2λ)

(13)

η′(z) ) 〈cosθ(z)〉 (14)

Effect of Electrostatic Force Truncation on Water J. Phys. Chem., Vol. 100, No. 42, 199617015

+ +

+ +



order parameter. Following Wilson and Pohorille,42 we have
used an alternative function to represent the water ordering

This form gives a better description of the water interface by
normalizing for the probability of a water molecule existing at
a given location inz. This is the same form used in the previous
section to describe polarization at the water/vapor interface.
Hydration Force: Results. Figure 6 plotsη(z) for the EW

and SH simulations of the LR DPPC bilayer. The center of the
water lamella is located atz) 0, and the phosphatidylcholine
headgroups are at approximately(16 Å. This plot shows that
most of the perturbed water has its positively charged hydrogen
atoms pointing toward the negatively charged phosphate groups.
The perturbation of water acts over a much longer range when
the spherical boundary conditions are used, in accord with our
results for the free water surface. The SBC results, in contrast
to the EW case, show little or no bulk water in the center of
the cell although at this water concentration the lipids are known
experimentally to be in excess water. The solid lines in Figure
7 represent the fit of the simulation results to the order parameter
solution given by Marcelja and Radic (eq 13) over the region
from -12 to 12 Å. This is the region where the slope and
concavity of the data are the same as those of the fitting function
and corresponds to the region where the density of water is 90%
or more of its bulk value. The EW results yield a decay length

of 1.8 Å, in excellent agreement with the aforementioned
experimental measurements of the decay length of repulsive
pressures between liquid crystalline bilayers, while the SBC
simulation gives a significantly higher value of 2.6 Å.
Electrostatic Potential Drop. Figure 8 plots the electrostatic

potential profile for the two bilayer simulations. Though the
EW simulation yields a potential drop (800 mV) which is
approximately twice the value expected from experiment, it is
significantly better than the 2300 mV dipole potential obtained
with spherical boundary conditions. The most striking differ-
ence between the two results is that the potential change occurs
entirely in the phosphatidylcholine headgroup and carbonyl
regions when the forces are not truncated, but extends out into
the water layer when truncation is employed. Sensitivity of
the dipole potential to cutoff artifacts has also been observed
in previous lipid simulations. Zhou and Schulten43 reported that
the potential drop across a DLPE bilayer decreased by a factor
of 7 when the fast multipole algorithm (FMA)44 was used to
calculate the coulombic forces instead of a spherical truncation
at 8 Å. Berkowitz and co-workers reported that the dipole
potential changed sign upon switching from SBC to Ewald
sums.45

Bilayer Surface Tension. Bilayer surface tensions were
calculated from the pressure anisotropies using eq 9. It is
important to note that the “microscopic” surface tension of a
small simulation cell may differ from that of a macroscopic
membrane and is a function of the surface area.46 The bilayer
surface tension calculated with Ewald sums is 42.9( 2.8 dyn/
cm, nearly 20 dyn/cm less than was calculated with SBC at the
identical value of the surface area. The effect of force truncation
on surface tension for water/vapor, water/octane, and water/
lipid interfaces is summarized in Table 3.

VII. Discussion and Conclusions

We have examined the effects of force truncation on the
structure and dynamics of bulk water and on the structure of
water at planar interfaces. The observation common to all the
systems is that long-range ordering of the fluid is increased when
force truncation is employed. This possibly unintuitive result
may be qualitatively understood by considering the nature of

Figure 6. Density-weighted water polarization profiles for the water/
lipid interface using the EW (solid) and 12 Å SH (dashed).

Figure 7. Fit of the density-weighted water polarization profiles to
the form of the order parameter in the Marcelja-Radic hydration force
theory: (a) EW, (b) 12 Å SH. The points are the simulation data, and
the solid line is the best fit to the data.

η(z) ) 〈F(z) cosθ(z)〉 (15)

Figure 8. Electrostatic potential profile, as calculated from eq 10, for
the water/lipid interface using EW (solid) and 12 Å SH (dashed).

TABLE 3: Water/Vapor, Water/Octane, and Water/Lipid
Surface Tension from Simulations Using the 12 Å SH and
EW Potentialsa

system 12 Å SH Ewald

water/vapor 70.2( 1.7 52.7( 1.4
water/octane 61.5( 1.5 46.6( 2.4
water/lipid 62.3( 2.8 42.9( 2.8

a The surface tension (in dyn/cm) was calculated from eq 9; details
on the water/octane system and the calculation of the error bars are
found in ref 25. The experimental values for the surface tension of
water/vapor and water/octane are 72.8 and 51.7 dyn/cm, respectively.
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the surroundings outside the cutoff radius. With SBC the system
outside the cutoff sphere appears to be a vacuum, and thus it is
as if each molecule is at the center of a tiny droplet. In behavior
analagous to the water/vacuum systems studied in section V,
the water within the cutoff sphere takes on an artificial ordering.
In the bulk water simulations, the structuring was clearly
demonstrated by the shape of the radial distribution function in
the vicinity of the cutoff radius. This led to a greater viscosity
and a lower translational diffusion constant for the SBC
simulation compared to EW. The structure of water at its vapor
interface, as described by the orientation of the water dipole
vector with the surface normal, is artificially extended several
molecular diameters into the water slab when the force is
truncated. This leads to dipole potentials that are 50-100%
greater than the EW result. Similar results are obtained for the
structure of the water/lipid interface: the decay length of the
water polarization was analyzed in terms of the Marcelja-Radic
theory of the hydration force, and while the EW simulation
results are in excellent agreement with the experimentally
determined value, the SBC simulation yielded a value which
was significantly higher. The surface tension of each type of
interface also showed a strong dependence on the treatment of
the Coulombic forces.
For the water/vapor simulations, no spherical truncation

technique evaluated here reproduced the no cutoff simulation
(EW). It should be noted that all the SBC methods tested here
are atom-based; i.e., the inclusion of an atom pair for the
interaction list is based solely on the distance between atoms.
This is to be distinguished from the class of truncation methods
(often referred to as group or residue based) where the
interaction list includes all members of small groups whose
group-group distance is less than the cutoff radius. Generally
the groups are defined so as to be relatively small and electrically
neutral. (Large force errors are observed if the groups have a
net charge.6) For systems such as water, where each molecule
can form a group, this approach is straightforward. For complex
macromolecules, however, the designation of small neutral
groups is arbitrary and sometimes requires adjustment of atomic
partial charges to maintain efficiency.
In comparing the SBC methods for water/vapor, the worst

results were obtained with the force shift method and the best
with the potential shift (Figure 5a). Interestingly, Wodak and
co-workers, in their simulations ofbulk water, found good
agreement between force shift and Ewald summation for both
structural and dynamic quantities and found that the shifting
function gave poor results.47 Our simulations using the SH
method showed that increasing the cutoff radius reduces the
magnitude of the force errors but does not eliminate them even
at rc ) 18 Å (Figure 5b). However, at this cutoff radius the
SBC simulation is more expensive than the EW simulation with
rc ) 12 Å.
In conclusion, force truncation leads to significant ordering

that effects transport and surface properties. Altering the
truncation termination function or the cutoff radius had little
effect compared to the inclusion of all Coulombic interactions
by way of the Ewald summation. The relatively poor results
for surface tension, diffusion constant, and viscosity for pure
water indicate that when Ewald summation is adopted, improve-
ments in the TIP3P water model (originally parametrized using
SBC atrc ) 8 Å) are required. In contrast, very good results
with Ewald were obtained for the surface tension of the water/
octane interface and the Marcelja-Radic parameter of the lipid
bilayer. While these are important tests of the potential energy
functions, further validation will ultimately be required when
the water model is replaced.
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Appendix A. Parallelization of the Ewald Summation in
CHARMM

To evaluate the real space sum in eq 3, an atom-based pair
list which includes all neighbors out to a distancerc plus a buffer
region (typically 2 Å) is generated periodically during the
simulation. The pair list is efficiently parallelized for distributed
memory computing using the methods previously described for
simulations with spherical boundary conditions.48 The calcula-
tion of the complementary error function is discussed in
Appendix B.
At each time step during the simulation, the reciprocal space

summation (term 3 in eq 3) is calculated in two steps. First, a
table is constructed of cos(kb‚rb) for the x, y, andz positions of
every atom at each value ofl, m, andn, respectively. Forp
processors operating in parallel, each node is responsible for
the calculation and storage of 1/pth of the table with the
partitioning done over atoms. In the second part of the
calculation the electrostatic energy is estimated by summing
over the reciprocal space vectors. For each wavevector, an inner
loop over theN atoms is carried out using the cosine table
calculated previously; i.e., the ordering of the inner and outer
loops is the reverse of that in eq 3. The parallelization is done
over atoms; i.e., each processor computes the inner loop only
over the atoms for which it is responsible. The reciprocal space
contribution to the electrostatic energy is determined by
summing over processors at the end of the energy call (in the
same way as is done for spherical cutoff simulations). The
parallel version of the force calculation, however, is more
complicated because the calculation of the force contribution
for a given wavevector requires that the sum over all the atoms
is available, and each processor only has the partial sum
calculated from its subset of atoms. A global sum can be carried
out for each wavevector before the force is calculated, but this
increases the communication cost and is very inefficient for a
large number of processors. An alternative is to calculate the
partial sum over atoms for each wavevector, store these values,
and then do a single global sum after going through all the
wavevectors. At this point the force can then be calculated by
again summing over each wavevector and atom. This second
approach reduces communication overhead but requires the
recalculation of some cos(kb‚rb) terms. The second approach is
thus preferable for computers with a large number of processors
and/or large communication latency times. The first approach,
because it requires fewer floating point operations, is more
efficient for the smaller number of nodes typical of workstation
clusters. For the simulations of a hydrated lipid bilayer,
described in section VI, the crossover point was found to be
eight nodes on an IBM SP2.
Though the parallelization schemes for the reciprocal space

summation are not nearly as elegant as the real space sum, we
find that for large systems remarkable efficiency is obtained,
e.g., 1 ps simulations of the hydrated lipid bilayer simulations
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(17 000 atoms) took 2.7 h on four processors and 10.8 h on a
single processor. These simulations were carried out on a cluster
of HP9000/735 series workstations connected by an FDDI ring.
One hundred percent efficiency is observed in the parallelization
because of reduced time to access the arrays which hold the
cosine tables (which are much smaller since each node only
stores the elements for its atoms). Greater than 100% efficiency
was observed in simulations of a 10 500-atom hydrated gel-
phase lipid bilayer (see ref 49 for details of the simulation).
These efficiencies are especially impressive since spherical
truncation simulations of the same systems yield only a 75%
parallelization efficiency.

Appendix B. Methods To Calculate erfc

Six methods (denoted as methods I to VI) were tested for
computing the erfc function. Methods I and II use a continued
fraction development of the incomplete gamma function as
outlined in section 6.2 of ref 28. In these methods two separate
summations are used, one of which converges faster at small
values ofr and a second which is more rapid at larger. Method
I uses double precision representation in the calculations and
iteratively computes erfc until changes in the value are on the
order of the double precision representation. Method II employs
the same algorithm as method I but uses a single precision
iteration criteria.
Methods III and IV employ polynomial expansions. Method

III uses a polynomial expansion multiplied by an exponential;51

method IV uses a Chebyshev polynomial expansion inside the
exponential (section 6.2 of ref 28).
Methods V and VI use a look-up table of erfc values

generated at the beginning of the simulation using method I.
Method V uses linear interpolation to estimate the erfc value
while method VI uses cubic spline interpolation. These methods
require a memory allocation of approximately 200 kB, much
less than 1% of the capacity of modern workstations.
To test these methods, the forces were calculated for one

dynamics frame from a 200 ps simulation of a periodic 55 Å
cubic system consisting of a hydrated protein fragment from
the crystal structure of the human class II histocompatability
molecule51 (180 amino acids, 4585 water molecules, and 8
counterions for a total of almost 17 000 atoms). Each of the
erfc methods was used to calculate the forces on each atom.
The accuracy of each method was estimated by comparing these
forces with those obtained from the high-precision iterative
technique (method I). This high-accuracy calculation was
performed withrc ) 20 Å, κ ) 0.250, andkmax ) 20. This
calculation is too computationally expensive for routine use in
MD simulations but can be used as a standard in estimating
errors. The error in the forces were used (instead of the error
in the energies) because the forces are used to calculate positions
in molecular dynamics; such errors would thus propagate
through the length of the simulation.
The average errors in the forces for these methods are shown

in Table 4. In column 2 the parameters of the calculation were
the same as the high-accuracy calculation described above; only
the erfc method was varied. In the third column, the calculation
was repeated with a set of parameters that more reasonably
balance computational time and accuracy:rc ) 16 Å,κ ) 0.180,
and kmax ) 7. The relative force error reported is the root-
mean-squared difference between the calculated forces and the
high-accuracy results, divided by the average force on each
atom. From column 2 we see that the single precision
calculation (method II) and the cubic spline interpolation (VI)
give the smallest deviations from the method I results, with the
linear interpolation method (V) having the largest error by far.

In medium accuracy calculations (second column of Table 4)
the differences in relative error between II, III, IV, and VI are
nearly identical and thus are not the deciding factor in choice
of method. The computational time required for 100 steps of
molecular dynamics is shown in the last column of Table 4.
The linear interpolation method requires the least time, but is
the least accurate and is not recommended. The cubic spline
interpolation method requires only slightly more time and is
significantly more accurate. These results are machine depend-
ent, although timing results using a 16-node parallel computation
on an IBM SP2 machine gave similar trends, with the cubic
spline also found as the method of choice (data not shown).

Appendix C. Choice of Parameters and Errors in Ewald
Calculations

Increasing eitherrc or kmax increases both accuracy and
computational time in Ewald calculations. The accuracy as a
function ofkmaxcan be seen in Table 5. Choice ofκ for a given
cutoff distance also affects accuracy, but in a more complex
way than eitherrc or kmax. As κ is increased, the force errors
decrease, reaching a minimum atκ ) 0.180 and then increasing
again (Table 6). Asκ does not affect the computational time
of the simulation, one should choose the value giving the greatest
accuracy for a givenrc andkmax.
To determine which set of parameters would be the most

efficient for a given size system, one must first decide what
level of error in the forces are acceptable. An arbitrary level
of 2 × 10-4 was chosen for this appendix. For each value of
kmax between 6 and 13, the minimum value ofrc and the
correspondingκ value which gave force errors of 2× 10-4 or

TABLE 4: Relative Force Errors (rms) for Both High and
Medium Accuracy Calculations for Each of the erfc
Calculation Methods Tested Herea

method high accuracy
medium accuracy

(computational time in h)

I (high precision) 1.26× 10-4 (6.14)
II (low precision) 1.94× 10-8 1.26× 10-4 (4.08)
III (ref 51) 1.01× 10-6 1.26× 10-4 (2.94)
IV (Chebyshev) 4.48× 10-7 1.26× 10-4 (3.29)
V (linear interpolation) 2.97× 10-4 1.96× 10-4 (2.75)
VI (cubic spline) 2.58× 10-8 1.26× 10-4 (2.80)

a The average relative force error is the root-mean-squared difference
between these force calculations divided by the average force on each
atom. Times shown are for 100 steps of dynamics at medium accuracy.

TABLE 5: Relative Force Errors (rms) for Various Values
of the Maximum Number of Reciprocal Lattice Vectora

kmax rel force error (rms) kmax rel force error (rms)

2 4.70× 10-2 8 2.46× 10-3

3 3.66× 10-2 9 1.15× 10-3

4 2.56× 10-2 10 5.21× 10-4

5 1.62× 10-2 11 2.05× 10-4

6 9.39× 10-3 12 7.97× 10-5

7 5.04× 10-3 13 3.19× 10-5

a For each calculationκ ) 0.180 andrc ) 16 Å.

TABLE 6: Relative Force Errors (rms) for Various Values
of K, with kmax ) 7 and rc ) 16 Å

κ rel force error (rms) κ rel force error (rms)

0.1 2.13× 10-2 0.24 1.53× 10-3

0.12 7.91× 10-3 0.26 2.94× 10-3

0.14 2.36× 10-3 0.28 5.04× 10-3

0.16 5.64× 10-4 0.3 7.92× 10-3

0.18 1.26× 10-4 0.32 1.17× 10-2

0.2 2.44× 10-4 0.34 1.63× 10-2

0.22 6.81× 10-4
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less were determined. Molecular dynamics runs of 100 steps
were then performed on the system using these Ewald parameter
sets and the computational time compared (Table 7). The most
effective set of parameters was found to beκ ) 0.180,kmax )
7, andrc ) 16 Å, which required 2.9 h for 100 dynamics steps
on a Hewlett-Packard 735 workstation. The timing results in
Table 7 vary by almost a factor of 4; thus, careful choice of the
parameters can significantly decrease computational time. This
result is system size dependent and also machine dependent; a
similar optimization would be required in each individual case.
A recent refinement of the Ewald technique, the smooth

particle mesh Ewald (PME) method,19 decreases the time
required to carry out the reciprocal space sum by employing
interpolation techniques and fast Fourier transforms (FFT). The
CHARMM implementation of the PME method is based on the
code described in ref 19. For relative force errors of 2× 10-4

with the system described here the computational time for 100
dynamics steps is decreased by a factor of 4 (Table 8). The
PME method requires about the same computational time as a
13 Å SBC calculation (Table 9) with the accuracy increased
by a factor of 1000.
The system used for the tests in Appendices B and C is

contained in a cubic box of length 55 Å. When the simulation
cell has sides of equal length, the values ofkmax in each direction

are the same. For anisotropic unit cells, such as the water/vapor
interface (see section V), these values are optimized indepen-
dently.
Finally, a comparison of the forces of the Ewald method with

those of three spherical cutoff methodssshift, force shift, and
force switchsis given in Table 9. Steinbach and Brooks6 have
shown that the FSH and FSW are more accurate than SH for
treating the electrostatics of a hydrated protein, and these
findings agree with Table 9. Nevertheless, small but systematic
errors can lead to important effects in a simulation (see section
V where SH gave results which were closer to EW than either
FSW or FSH). Table 9 demonstrates that even large spherical
cutoff values cannot reproduce the accuracy of the Ewald
calculations, making it the method of choice for periodic
systems. The medium accuracy Ewald calculations reduced the
force error by a factor of 100 or more over all the SBC methods.
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