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A standard experiment in physical chemistry laboratory
courses is to analyze vibrational–rotational spectra of isotopic
mixtures of hydrogen chloride. The spectroscopic parameters
extracted from these data can then be related to molecular
properties such as bond strength and bond length (1). A recent
article in this Journal described the determination of spectro-
scopic parameters via a nonlinear least-squares fit of the spectral
data to an anharmonic oscillator/distorted rotator model (2).
This method has several advantages over the analysis tradi-
tionally employed for this experiment (1) and exposes students
to the technique of nonlinear regression, a method made
accessible by tools available in standard spreadsheet packages
(3). Most importantly, the connection between experimental
result and theoretical model is much clearer when students fit
their data directly to the equations of the model, rather than
transforming the equations into a form amenable to linear
regression.

Unfortunately, as noted by the authors of ref 2, the
nonlinear least-squares approach does not directly provide
error estimates for the fitted parameters. A second recent
article in this Journal, however, described a method for the
determination of parameter uncertainties in nonlinear fits that
relies on numerically finding the partial derivatives of the
fitting function with respect to the parameters using finite
differences (4 ). Although they did not demonstrate their
method on the analysis of infrared diatomic spectra, it could
well have been applied to this problem. A drawback to their
approach is the mathematical sophistication required of
students if they are to use the algorithm as anything other
than a “black box”.

Finally, it should be noted that within many popular
models, including the example presented here, analysis of
infrared spectra does not require nonlinear regression.
Schwenz and Polik have shown that the multiple linear
regression method can be applied successfully to this problem
(5) (multiple linear regression techniques are also available
in many standard spreadsheet packages). They pointed out
that the nonlinear least square method should give the same
result as their multiple linear regression technique. They
noted the disadvantages of the nonlinear regression, namely,
there is no guarantee that the nonlinear regression converges
to the global best fit and the calculation of errors in the fitting
parameters is difficult. The nonlinear regression method,
however, is attractive in that it can be easily extended to more
complicated (i.e., truly nonlinear) spectroscopic models.

To summarize, the advantage of the nonlinear fitting
procedure is its simplicity to set up as a spreadsheet and its
direct connection between experimental data and theoretical
model, which students can readily comprehend. The greatest
weakness of nonlinear regression is that the mathematics of

the parameter uncertainty calculation can be complicated.
In the following we describe an alternative approach to

the analysis of the HCl infrared spectrum experiment. This
method uses the nonlinear Solver approach described in ref
2 and extends it in a straightforward manner to the calculation
of uncertainties using the technique of statistical Monte Carlo
sampling. The approach offers several opportunities for students
to learn topics from statistics and model fitting, and it em-
phasizes the connection between uncertainty in the measured
data and the uncertainty in the parameters being fit to a theo-
retical model.

First, we present a short review of a model for vibra-
tional and rotational energy levels and how this can be fit to
experimental data. We then describe a Monte Carlo sampling
technique that provides rigorous error estimates for each of
the fitted parameters. In addition to providing error estimates
for the present case of a nonlinear least squares analysis, this
exercise more clearly demonstrates some of the assumptions
commonly used in software packages for linear least squares
fitting. The Microsoft Excel spreadsheet and Visual Basic
macro used to perform these calculations are available as
supplemental materialW and could easily be altered for a variety
of model-fitting applications.

Theoretical Model

The vibrational energy levels for a diatomic molecule,
taking into account the lowest order anharmonic term in the
potential energy, are

E(v) = ωe(v + 1⁄2) – ωe χe(v + 1⁄2)2 (1)

where the energy, E, and fundamental vibrational frequency,
ωe, are given in wavenumbers (cm�1), and the anharmonicity
constant, χe, is unitless. The rotational energy levels, also
given in units of cm�1, are

E ( J ) = BJ ( J + 1) – DJ 2( J + 1)2 (2)

where B is the rotational constant and D is the centrifugal
distortion constant. Combining eqs 1 and 2 and writing the
rotational constant as an explicit function of the vibrational
quantum number yields

 E(v,J ) = ωe(v + 
1⁄2) – ωe χe(v + 

1⁄2)2
 + B(v)J ( J + 1) – DJ 2( J + 1)2 (3)

The dependence of the rotational constant on vibrational
quantum state is often represented by the relation

B(v) = Be – αe(v + 1⁄2) (4)

resulting in a model that contains five parameters: ωe, χe, Be,
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αe, and D. Note that other models for vibrational–rotational
energy levels are possible, having a greater or fewer number
of parameters. The model chosen here is typical of those pre-
sented in undergraduate physical chemistry texts. The pro-
cedure to be described is equally applicable to other models.

Data Acquisition

Students acquired infrared spectra of the fundamental
and first overtone bands for gas-phase HCl and DCl using a
Mattson 5000 series FTIR with 0.04 cm�1 resolution, allowing
study of four isotopic combinations: H35Cl, H37Cl, D35Cl,
D37Cl. For each molecule, spectral transitions were assigned
to changes in vibrational (vi → vf) and rotational ( Ji → Jf)
quantum numbers. Class data were pooled to find the mean
value and variance for the location of each spectral peak. (An
important benefit of this exercise is that in setting up the
spreadsheet calculation students often discover errors they
made in the assignment of quantum numbers or in recording
the peak frequencies.)

Least-Squares Fitting

A spreadsheet is constructed containing a column of ex-
perimentally measured mean transition frequencies (ωi

DATA)
and four columns containing the initial and final vibrational
and rotational quantum numbers assigned to each transition.
Then, a column of predicted frequencies (ωi

MODEL) is con-
structed using the differences in energy levels given by eq 3.
The reader is referred to ref 2 for explicit spreadsheet formulas
that can be used with only slight modification. The best values
of the model parameters are then obtained by minimizing
the weighted sum of the squares of the difference between
experimental data and theoretical model

   
χ2 =

ωi
MODEL – ωi

DATA

σi

2

Σ
i

(5)

where the summation includes all the spectral peaks for a
given isotope (~10 peaks in both the R and P branches of
the fundamental and first overtone bands in the present case),
and the σi give the standard deviation associated with each
of the data points. In this work the Solver function available
in Microsoft Excel was employed for the minimization pro-
cedure, but similar functionality is provided in other spread-
sheet packages (3).

As described in refs 1 and 6, the assignment of un-
certainties in the data is crucial for rigorous model fitting.
However, this fact is unappreciated by many practitioners of
least-squares fitting. Ideally, the σi should be calculated from
the variance of a large number of repeated measurements for
each data point. If repeated measurements are available for
only a few points, or if a small number of measurements have
been made for each point, it may be best to assume a uniform
standard deviation for the data. In the case where no repeated
measures are obtained, the σi could be assigned uniformly
on the basis of additional considerations such as the resolution
of the spectrophotometer. In the present case the second
approach was used because each data point was measured only
four times (once by each student team), resulting in assumed
σi between 0.013 and 0.077 cm�1 for the four isotopic
combinations.

Reasonable initial guesses for the spectroscopic parameters
(e.g., literature values from any physical chemistry textbook)
result in good convergence of χ2 to its minimum value.
Students should be encouraged, however, to investigate the
effect of convergence criteria, minimization algorithm, and
initial parameter values on the χ2 value obtained. Table 1 gives
the values of the spectroscopic parameters and χ2 for each
isotope.

Assuming the assignment of uncertainty in the data is
correct, χ2 provides a measure of the validity of the model.
An approximate guideline is that χ2 should be approximately
equal to the number of degrees of freedom, df = m – n, where
m is the number of data points and n is the number of
parameters being determined. In the present case, 36 spectral
peaks were used to determine 5 parameters, giving df = 31,
approximately equal to the χ2 values given in Table 1. A more
quantitative criterion comes from the fact that the probability
distribution for the minimized χ2 is given by the chi-square
distribution if the model is correct. At the 90% confidence
level the upper and lower limits of the chi-square distribu-
tion are 19.3 and 45.0, respectively. This means that χ2 greater
or less than these values would occur by chance only 10% of
the time if the assumed model is correct, providing a guide
for rejecting incorrect models. A second measure of the quality
of the fit is the root mean square difference between the ob-
served frequencies and those predicted by the model. This
quantity, labeled σfit in Table 1, is approximately equal to the
standard deviation of the data. In other words, the differ-
ence between data and model are comparable to the random
measurement errors in the data.

derarfnItnedutSmorfseitniatrecnUdetaicossAdnastnatsnoCcipocsortcepS.1elbaT
gnilpmaSolraCetnoMdnaartcepS

-eloM
eluc

ωe mc/ �1 χ e B e mc/ �1 α e mc/ �1 D mc/ �1 χ 2 σ tif mc/ �1 k mN/ �1 re mp/

H 53 lC 335.9892
)210.0(

6453710.0
)3100000.0(

0195.01
)5000.0(

56203.0
)60000.0(

225000.0
)400000.0(

3.63 720.0 528.515
)400.0(

0747.21
)3000.0(

H 73 lC 972.7892
)310.0(

5243710.0
)3100000.0(

9375.01
)5000.0(

90203.0
)80000.0(

115000.0
)400000.0(

1.33 440.0 848.515
)400.0(

6747.21
)3000.0(

D 53 lC 325.4412
)600.0(

0794210.0
)8000000.0(

1 5844.5
)2000.0(

41211.0
)30000.0(

241000.0
)200000.0(

7.13 210.0 820.615
)300.0(

2647.21
)3000.0(

D 73 lC 593.1412
)210.0(

8384210.0
)0200000.0(

1 1234.5
)6000.0(

57111.0
)80000.0(

141000.0
)500000.0(

0.13 030.0 240.615
)600.0(

6647.21
)7000.0(

NOTE: Uncertainty values are in parentheses.
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Monte Carlo Sampling

Having obtained best values for each fitted parameter
and having tested the validity of the model, the remaining
task is to determine error estimates for each parameter. For
linear least-squares fitting the uncertainty in each parameter
is determined at the minimized χ2 value, from the uncertainty
in each data point and the value of each data point, using
matrix algebra. For the simple case of fitting data to a straight
line, this approach yields relatively simple analytic formulas.
For more complicated functional forms the calculation is
tedious but can be carried out by most software packages. It
is important to emphasize that the distinction between linear
and nonlinear least squares fitting is made on the basis of
how the model is a function of the parameters, not on how
the model is a function of the independent variable(s). For
example, fitting data to a polynomial expansion

f (x,α0,α1,α2,α3) = α0 + α1x + α2x2 + α3x3 (6)

to determine the parameters {α i} is a linear least squares fitting
problem. Examples of functions that are nonlinear in their
parameters include

f (x,α0) = sin(α0x) ;    f (x,y,α0,α1) = α0x + α0α1 y (7)

For nonlinear least squares fitting problems, parameter
uncertainty is more difficult to determine. Fortunately, there is
a general technique for estimating these parameters based on
generating a large number of synthetic data sets so that many
χ2 minimizations can be carried out and the distribution of
fitted parameters studied. This method has been successfully
applied to many problems of nonlinear model fitting in the
physical sciences (see for example refs 7 and 8). The central
idea behind this Monte Carlo sampling is that the finite-sized
data sets collected in the laboratory are drawn from a distribu-
tion of possible experimental results (due to random measure-
ment errors). Monte Carlo sampling allows a quantitative
determination of precision by generating a large number of
data sets consistent with the experimentally measured data
(i.e., drawn from a normal distribution with the same mean
observed in the laboratory and a standard deviation equal to
the error estimate for each data point). After carrying out the
fitting procedure on each member of the synthetic data set, a
distribution of parameter values is obtained whose standard
deviations are the uncertainty in the fit parameters. The text
Numerical Recipes by Press et al. (6 ) (to which the reader is
referred for a thorough discussion of this method) describes
the power in this way: “Offered the choice between mastery
of a five-foot shelf of analytical statistics books and middling
ability at performing statistical Monte Carlo simulations, we
would surely choose to have the latter skill.”

Fifty synthetic data sets were constructed by performing a
random draw from a normal distribution for each of the 36
peak spectral frequencies. The mean and standard deviation of
each normal distribution were set to the mean and the error
estimate of the students’ measurements for each spectral peak.
We performed these random draws using a combination of
Excel’s RAND and NORMINV functions. The NORMINV
function takes a cumulative probability value and returns a
value for a normal distribution with a given mean and standard

deviation. The RAND function generates a random number
from a uniform distribution between 0 and 1. By inserting the
RAND function into the NORMINV function and including
the appropriate information from the student measurements
into the NORMINV function, we could create a synthetic
data set each time the spreadsheet was recalculated. Each
synthetic data set then undergoes the least-squares fitting
procedure. From the parameter distribution the standard error
is obtained for each fit parameter. The entire procedure is
run as a Microsoft Excel macro using Microsoft Visual Basic
and requires a few minutes of computer time.

Table 1 presents results for the spectroscopic constants
using this method. The confidence limits are very small with
relative errors on the order of 10�5 and 10�6. The precision of
these students’ results is largely attributable to the high in-
strumental resolution available in our laboratory. Greater
uncertainty in the location of spectral peaks will naturally lead
to larger uncertainty in the parameters. An attractive feature
of this approach is that students can easily construct the
distribution of any molecular property related to the fit
parameters. As examples, we determined the uncertainties in
equilibrium bond length and force constant and included
these in Table 1. This allows the student to decide if there
are statistically significant differences in bond length or
strength between the isotopic combinations. With this set of
student data, there are significant differences between the
hydrogen- and deuterium-containing isotopes. Presumably,
this difference arises because the deuterium compounds
fit the model better (the vibrational states studied are in a
region of the potential curve that is more reasonably well
represented by a single anharmonic term).

Summary

This exercise provides several benefits to students in a
modern physical chemistry course. The uncertainties in both
spectroscopic and molecular properties are very small, illus-
trating the power of spectroscopic methods to determine
molecular structure. The fitting procedure is relatively
straightforward, allowing a strong connection between theory
and experiment. If multiple spectra are not available to
explicitly calculate the standard deviation in peak location,
students could assume uncertainties in their data based on
the resolution of their instrument and then proceed to obtain
approximate error estimates for their fit parameters via the
Monte Carlo sampling method. Repeating this procedure
with varying levels of assumed instrumental resolution would
explicitly demonstrate the relationship between instrumental
resolution and the precision of molecular properties.

This analysis of the data brings together a number of
important topics in statistics and model building, with numer-
ous possible extensions. For example, different models for
fitting the data (e.g., harmonic vs anharmonic oscillator, or
rigid vs nonrigid rotor) could be compared. This analysis,
which is covered in many physical and analytical chemistry
texts, involves application of the F test and shares many
spreadsheet calculations with the nonlinear fitting and Monte
Carlo sampling described here. Advanced students may wish
to try reducing the number of parameters. For example, by
writing ωe as a function of the force constant, Be as a function
of the bond length, and D as a function of both k and re, the
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analysis can be done solely in terms of k and re. Alternatively,
parameters could be added to allow the centrifugal distortion
constant to be a function of vibrational quantum state (in a
form analogous to the rotational constant, B). An interesting
project would be to compare the uncertainty in force constant
and bond length obtained from infrared spectroscopy with that
from quantum chemical calculations (e.g., by investigating
different basis sets).

The method of error analysis described here is general and
can be employed as an alternative to linear least-squares fitting.
For functions other than a straight line or simple polynomial,
the use of a general minimization routine such as Solver is
often easier than setting up a spreadsheet for multiple linear
regression. This is especially true for multivariate problems
such as the analysis of the HCl/DCl.
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The Microsoft Excel spreadsheet and Visual Basic macro
used to perform these calculations are available as supplemental
material in this issue of JCE Online.
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