Polyunsaturated Docosahexaenoic vs Docosapentaenoic Acid—Differences in Lipid Matrix Properties from the Loss of One Double Bond

Nadukkudy V. Eldho,† Scott E. Feller,‡ Stephanie Tristram-Nagle,§ Ivan V. Polozov,† and Klaus Gawrisch*†

Contribution from the Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, and Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Received October 21, 2002; E-mail: Gawrisch@helix.nih.gov

Abstract: Insufficient supply to the developing brain of docosahexaenoic acid (22:6n3, DHA), or its ω-3 fatty acid precursors, results in replacement of DHA with docosapentaenoic acid (22:5n6, DPA), an ω-6 fatty acid that is lacking a double bond near the chain’s methyl end. We investigated membranes of sn-glycero-3-phosphocholine by solid-state NMR, X-ray diffraction, and molecular dynamics simulations to determine if the loss of this double bond alters membrane physical properties. The low order parameters of polyunsaturated chains and the NMR relaxation data indicate that both DHA and DPA undergo rapid conformational transitions with correlation times of the order of nanoseconds at carbon atom C2 and of picoseconds near the terminal methyl group. However, there are important differences between DHA- and DPA-containing lipids: the DHA chain with one additional double bond is more flexible at the methyl end and isomerizes with shorter correlation times. Furthermore, the stea...
unknown. However, because of the high DHA content in synaptosomal and retinal membranes, an influence on brain function via the properties of the lipid matrix appears likely.

Insufficient supply of DHA or its ω-3 fatty acid precursors during infancy results in replacement of DHA by docosapentaenoic acid (22:5n6, DPA), an ω-6 fatty acid with the same number of carbon atoms but one fewer double bond at the terminal methyl end of the chain. This substitution is generally nonlethal, but is associated with some loss of brain function.\(^\text{1,16,17}\)

The present study was driven by the hypothesis that replacement of DHA by DPA alters the properties of neural membranes that in turn alter the function of integral receptor proteins (e.g., rhodopsin). An alternative possibility is that structural differences between DHA and DPA affect the function of peripheral enzymes involved in lipid synthesis. For example, recent studies have established that the levels of DHA in membranes are tightly linked to the accumulation of lipids with phosphatidylserine (PS) headgroups.\(^\text{18}\) Changes in membrane protein function could then be a consequence of different PS content. Both hypotheses have in common that structural differences between DHA and DPA, and, perhaps, differences in membrane properties related to replacement of DPA by DHA are the trigger of events.

Experiments were conducted on model membranes of 1-stearoyl(d\text{35})-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0(d\text{35})-22:6n3PC) or 1-stearoyl(d\text{35})-2-docosapentaenoyl-sn-glycero-3-phosphocholine (18:0(d\text{35})-22:5n6PC) at full hydration. The perdeuterated stearic acid chain in both lipids permitted measurement of \(^1\)H NMR order parameters. In magic angle spinning NMR experiments, we resolved a large number of proton and carbon resonances of the polyunsaturated chains. The measurement of proton NOESY cross-relaxation rates provided a measure of motional and conformational disorder in the polyunsaturated membranes. The differences in motional correlation times along the polyunsaturated chains were evaluated by an analysis of \(^1\)C-spin–lattice relaxation times. Chain order in the polyunsaturated chains was evaluated by measurement of the time constants for magnetization transfer from protons to carbons. The area per lipid molecule, the bilayer thickness, and the electron density profiles of the membranes were determined by X-ray diffraction. A detailed analysis of polyunsaturated chain conformation and flexibility as well as of lipid packing was achieved by comparison of experimental properties with results of molecular dynamics (MD) simulations.

Materials and Methods

Materials. Docosapentaenoic acid was purified by fractional distillation and HPLC from a mixture of fatty acid ethyl esters kindly provided by the Nutrasweet Kelco Company (Deerfield, IL). The DPA had a purity of 98 wt % as determined by gas chromatography. The phospholipids were synthesized by Avanti Polar Lipids, Inc. (Alabaster, AL).

Lipid purity as determined by HPLC and GC was 98%. The impurities were trace amounts of phosphatidylincholines with a different composition of fatty acids. Both lipids had a low degree of acyl chain migration (about 3% as determined by NMR). The antioxidant 2,6-ditert-butyl-4-methylphenol (BHT) was added to the solution of lipids in dichloromethane at a BHT/lipid ratio of 1/250 to prevent oxidation. A quantitative assessment of the amount of oxidized lipid was conducted by GC analysis in which the peak ratios of stearic acid to DHA or DPA were compared. The content of oxidized fatty acids was below the detection level of 1%.

NMR Samples. The NMR samples were prepared in a glovebox (Plas Labs, Lansing, MI) filled with a 90/10 vol % nitrogen/hydrogen gas mixture. Residual oxygen was burned catalytically to keep the oxygen concentration below 0.1 vol % and the resulting water vapor adsorbed by a column. Carefully degassed, deuterium-depleted water or D_2O (Cambridge Isotope Laboratories, Woburn, MA) containing 1 mM diethylenetriaminepentaacetic acid (DTPA) as chelator was added to the dry lipid for a total water content of 50 wt %. The lipid/water dispersions were homogenized by stirring and centrifugation and then transferred by centrifugation into a 4-mm MAS rotor equipped with inserts made of Kel-F with a spherical sample volume of 11 μL. (Bruker Instruments, Inc., Billerica, MA) or into small glass containers that were sealed with ground glass stoppers covered with a thin layer of Teflon grease. We checked the degree of lipid oxidation qualitatively by \(^1\)H MAS NMR while conducting experiments, and quantitatively by GC analysis at the end of each experiment. Most samples showed insignificant amounts of oxidation (less than 1%) for periods as long as two weeks. However, samples degraded rapidly after detection of the first traces of oxidation. Results from samples that contained more than 2% of oxidized lipid were discarded.

X-ray Diffraction Samples: Oriented Samples. The lipid samples consisted of a thin (3 μm) film of lipid deposited onto a piece of freshly cleaved mica using the rock and roll method\(^\text{19}\) to orient the approximately 500 bilayers. The originally flat mica substrate was then bent and glued to a cylindrical beaker of radius 17.5 mm. The procedure was carried out in a glovebox under exclusion of oxygen to prevent DHA/DPA oxidation. The samples were quickly inserted into the X-ray hydration chamber, and the chamber was flushed with nitrogen for 3–5 min. Hydration was accomplished in less than 40 min using a Peltier cooler to condense water onto the sample.\(^\text{19}\)

Capillary Samples. X-ray samples in capillaries containing lipid and deionized water at a ratio of 1:1 (w/w) were prepared by the same method as the NMR samples. Capillaries were filled in an oxygen-free atmosphere, sealed with Parafilm, and flame-sealed outside the glovebox.

\(^{31}\)P NMR: The \(^{31}\)P NMR spectra, recorded at 121.5 MHz, were acquired with a Hahn echo (\(d_1\)-90°-\(r\)-180°-acquire) pulse sequence with a repetition time \(d_1 = 2\) s, a 3.5-μs 90° pulse, an echo delay time \(\tau = 50\) μs, a spectral width of 200 kHz, and 20 kHz proton noise decoupling that was turned on at the first \(^{31}\)P pulse of the sequence.

\(^{1}H\) NMR: Deuterium NMR spectra were observed at 46.1 MHz using a quadrupolar echo pulse sequence (\(d_1\)-90°-\(r\)-90°-acquire) with a repetition time \(d_1 = 0.5\) s, a 2.7-μs 90° pulse, a delay time \(\tau = 50\) μs, and a spectral width of 200 kHz. Spectra were recorded over the temperature range from −20 to +70 °C. Sample temperature was controlled to ±0.1 °C with a Bruker B-VT2000 digital temperature controller.

control unit. Absolute temperature readings were calibrated to a precision of ±0.5 °C.

1H MAS NMR: The NOESY NMR experiments with magic angle spinning were conducted on a Bruker DMX500 widebore spectrometer at a resonance frequency of 500.13 MHz at a MAS spinning frequency of 10.00 or 10.25 kHz using a Bruker triple resonance MAS probe with double gas bearings for 4-mm rotors. Two-dimensional NOESY was carried out in the phase-sensitive mode.20,21 The pulse sequence (d1-90° - τ1 - 90° - τm - 90° - acquire [tτ1]), was employed: d1= 6 or 15 s; 512 τ1 increments; a 3.7-µs 90° pulse; mixing times, τm, from 5 to 800 ms; 2048 τ1 points; 16 scans per τ1 increment; and 3.3 kHz spectral width; a square sine-bell window function was applied in both dimensions before 2D-Fourier analysis. Some cross-peaks of 18:0(d35)-22:6n3PC had weak contributions from J-couplings that oscillated with the mixing time, τm. We suppressed these contributions with an additional π-pulse located at random positions within the mixing time period.22 The position of the π-pulse was shifted with each τ1 increment. This altered the phase of J-cross-peaks at random, resulting in their cancellation. The magnetic field strength was locked to the internal D2O resonance of the sample using the third channel of the MAS probe. The volumes of cross- and diagonal peaks in the two-dimensional spectra were determined by integration, and the relaxation matrix calculated as described previously.23

13C MAS NMR: The experiments were carried out at 30±2 °C on Bruker DMX500 and DMX300 spectrometers at resonance frequencies of 125 and 75 MHz, respectively. The spin–lattice relaxation times, T1, were measured at a MAS spinning frequency of 10 kHz by the inversion–recovery pulse sequence (d1-180°-τ-90°-acquire), a delay time d1 = 11.5 s, a 5.5-µs 90° pulse, and a spectral width of 27.7 kHz. The experiments were conducted with 50 kHz of proton noise decoupling during data acquisition. The nuclear Overhauser enhancement was retained by application of 2 kHz of proton-noise decoupling starting 3 s before the application of 13C pulses. Spectra were processed using a sine-bell window function before Fourier transformation. The baseline was corrected using a polynomial function of fifth order. The signal intensities were fitted to the equation

\[M(t) = M(0) \exp(-\lambda T_{CH}) \exp(-t/T_{1P}(1H)) \]

where TCH is the time constant of magnetization transfer from the 1H spin reservoir to the 13C reservoir and T1P(1H) and T1P(13C) are the rotating frame spin–lattice relaxation times of 1H and 13C, respectively. To improve precision of data analysis, the relaxation times, T1P(13C), were measured by a pulse sequence similar to the cross-polarization experiments but without application of the spin-lock pulse for protons. The data were fitted to the function

\[M(t) = M(0) \exp(-t/T_{1P}(13C)) \]

where t is the length of the 13C spin-lock pulse.

The signal intensity of resonances in the cross-polarization experiment were well described by eqs 1 and 2 (see Figure 12). The parameters M(0), TCH, and T1P(1H) were determined using the nonlinear regression feature in SigmaPlot 8.0 (SPSS, Inc., Chicago, IL) that is based on the Levenberg–Marquardt algorithm. The rates of magnetization transfer from protons to carbons were of the order of milliseconds for DHA resonances near the carbonyl group and dozens of milliseconds for resonances near the terminal methyl group indicating differences in the strength of effective dipolar interactions along the polyunsaturated hydrocarbon chains. Using the measured/fitted values of M(0), TCH, T1P(13C), and T1P(1H), we established that signal intensity of 13C resonances increases linearly up to 20% of the value of M(0) to a very good approximation. The intensity in this range is solely determined by TCH and M(0). Consequently, we focused on measurements of peak intensities at short contact times to determine the TCH values with high precision. Because of the strong variation in TCH values, those contact times ranged from a fraction of a millisecond up to several milliseconds, depending on the particular carbon resonance. The intensity of partially superimposed resonances was determined by deconvolution using the deconvolution routine in XWINNMR 3.1 (Bruker Biospin Corp., Billerica, MA). Experimental errors of TCH (approximately 10% in our experiments) depend solely on the signal-to-noise ratio of resonances.

X-ray Data Collection: Oriented Samples. The sample was mounted with the cylinder axis horizontal so that lamellar diffraction was along the vertical z-axis. X-rays of wavelength λ = 1.2727 Å with 1.5% energy dispersion were provided at the D1 line at CHESS (Cornell High Energy Synchrotron Source) from a monochromator consisting of two multilayers of W/Be/C (Osmic, Auburn Hills, MI). The multilayers were detuned slightly to minimize J/2 radiation. Angular resolution in q, of 0.001 Å−1 was achieved with slits. We varied the X-ray exposure times from 0.5 s to measure the lowest two orders, to 120 s to measure the diffuse scattering. For the longer time, the ratio of absorbed photons to the number of lipid molecules was less than 10−4 with a total flux on the sample of 6 × 108 photons/s. The diffraction data were collected using a CCD detector with 2048 × 2048 pixels and a pixel size of 40 µm.27 We corrected the CCD data for distortion, intensity, zingers and dark count following the protocol of Barna et al.28 and the files supplied by CHESS. The sample temperature (24.0 ± 0.2 °C) was controlled with a Neslab (Portsmouth, NH) controller and was measured with a NIST-calibrated Yellow Springs Instruments (Yellow Springs, Ohio) surface probe.

Capillary Samples. The X-ray source for these samples was a Rigaku fixed tube Cu source operated at 2.3 kW with a graphite monochromator to eliminate Kβ radiation, yielding λ = 1.5418 Å. Three sets of Huber slits produced an in-plane resolution of 0.02 Å−1. Experiments were conducted at 30 ± 0.2 °C. Temperature was controlled by a Lake Shore Cryotronics Model DRC-91C temperature controller (Westerville, Ohio), which responded to a 1000-ohm platinum resistance thermometer (Rosemount, Minneapolis, MN) in the center of the sample chamber.

X-ray Analysis: The background was subtracted from X-ray scattering data of fully hydrated, oriented samples using scattering from regions well outside the region where diffuse lipid scattering occurred (between green lines and white areas in Figure 1). A quadratic function was fitted to the background and the interpolated background was

previously described.29 The measured intensity \(I(q)\) is the product, \(I(q) = S(q)(F(q))'A(q)\), of a structure factor \(S(q)\) and a form factor \(F(q)\) squared, as well as the usual \(q^2\) Lorentz factor for oriented cylindrical samples and an absorption factor \(A(q)\).30,31 which was calculated using the absorbance decay length of 2.2 mm for lipid/water mixtures for the wavelength of X-rays used. The structure factor depends primarily on the bulk modulus for layer compression, \(B\), and the bending modulus of monolayers, \(k\).32 Analysis of the \(q\) dependence yielded \(k\) values in the range 1.1–1.2 × 10^-12 ergs for both lipids, and values for \(B\) of 1.3 × 10^10 ergs/cm^4 for 18:0(d 35)-22:6n3PC and 2.5 × 10^12 ergs/cm^4 for 18:0(d 35)-22:6n3PC. Within these ranges the form factors obtained from eq 1 were only modestly affected by values of \(B\) and \(k\) used to calculate \(S(q)\). For smaller \(q\), corresponding to the first and second orders, domain size also affects \(S(q)\). Domain sizes \(L_r\) and \(L_z\) were estimated from \(q\) near the first and second diffraction orders to be 30 μm and 0.2 μm, respectively. It was found that the form factors were not much affected by substantial variations in \(L_r\) and \(L_z\) when diffuse intensities were used that had \(q\) values at least 50 pixels away from \(q = 0\). The final \(F(q)\) was then obtained from \(S(q)\) and the measured \(I(q)\) taken from 50 < \(q_r\) < 65 pixels. \(F(q)\) was then read at the Bragg orders, \(q_r\), for \(h = 2–6\). The sharp first two orders observed at short exposure times gave \(D_0 = 66.2 ± 0.2\) Å for 18:0(d 35)-22:6n3PC, and \(D = 65.2 ± 0.2\) Å for 18:0(d 35)-22:6n3PC; the ratio of the intensities of these first two orders also provides estimates for \(F(q)\) which is not well determined by the diffuse scattering method.32 The value of \(F(0)\) was determined33 using \(F(0) = 2(n_r - V_t)ρ m/\lambda^2\), where \(n_r = 458\) is the number of electrons in 18:0(d 35)-22:6n3PC, \(n_t = 460\) is the number of electrons in 18:0(d 35)-22:6n3PC, \(V_t\) is the molecular volume, 1359 ± 3 Å^3 for 18:0(d 35)-22:6n3PC and 1366 ± 3 Å^3 for 18:0(d 35)-22:6n3PC, \(\rho_m = 0.33 e/ Å^3\) is the electron density of water at 30 °C. \(F(0)\) is calculated to be 0.16 e/ Å^2 for 18:0(d 35)-22:6n3PC and 0.19 e/ Å^2 for 18:0(d 35)-22:6n3PC, and \(A\) is the area/lipid (calculated below). Mo-
via the particle mesh Ewald summation. All covalent bonds involving hydrogen were fixed at their equilibrium distances using the SHAKE algorithm. A time step of 2 fs was employed with a leapfrog Verlet integration scheme. A neighbor list, used for calculating the LJ potential and the real space portion of the Ewald sum, was kept to 12 Å and updated every 20 fs. A variant of the extended system formalism, the Langevin Piston algorithm, was used to control the normal pressure. The temperature was maintained at 30 °C by means of a Hoover thermostat. Coordinate sets were saved every 1 ps for subsequent analysis. Simulations were carried out using eight processors on a Beowulf-type parallel computer, with each nanosecond of simulation taking approximately 5 days of wall time. The total length of each simulation was 16 ns, with the first nanosecond discarded as equilibration.

Results

Phase Behavior. The 31P NMR spectra (Supporting Information) and the 2H NMR spectra of both lipids at temperatures below -2.5 °C are characteristic of a lamellar gel phase (spectrum not shown) and above -2.5 °C of a lamellar fluid phase (Figure 2). No other phase transitions were detected over the range from -20 to $+70$ °C. The first moments, M_1, of the 2H NMR spectra were calculated according to the formula $M_1 = \int_0^\infty \langle \omega \rangle \cdot d\langle \omega \rangle d\omega$ where $\langle \omega \rangle$ is the intensity of the NMR spectrum as a function of the frequency offset ω ($\omega = 0$ corresponds to the Larmor frequency of the 2H nucleus). The accurate gel-fluid phase transition temperature was obtained by plotting the first moment of the 2H NMR spectra recorded at temperature intervals of 1 °C from low to high temperature (Figure 3). The loss of a double bond from DHA to DPA had the range from -20 to $+70$ °C. The first moments, M_1, of the 2H NMR spectra were calculated according to the formula $M_1 = \int_0^\infty \langle \omega \rangle \cdot d\langle \omega \rangle d\omega$ where $\langle \omega \rangle$ is the intensity of the NMR spectrum as a function of the frequency offset ω ($\omega = 0$ corresponds to the Larmor frequency of the 2H nucleus). The accurate gel-fluid phase transition temperature was obtained by plotting the first moment of the 2H NMR spectra recorded at temperature intervals of 1 °C from low to high temperature. The bottom part shows the difference in sn-1 order between both lipids. Stearic acid chain order parameters are lower in 18:0(d35)-22:6n3PC, where there is no statistically significant difference in area per molecule. However, according to the X-ray studies (vide infra) there is no statistically significant difference in area per molecule between the lipids. Furthermore, the change in average order parameter ($\Delta S = +0.008$) is reproduced in the MD simulations ($\Delta S = +0.007$) that were carried out with identical areas per molecule. The lesson is that area per molecule and hydrophobic thickness of bilayers composed of mixed-chain polyunsaturated lipids cannot be determined accurately from sn-1 chain order parameters only. We conclude that the 2H NMR experiment is probing changes in sn-1 chain structure that are caused by the removal of the double bond from the polyunsaturated chain in position sn-2.

![Figure 3. First moments of the 2H NMR spectra of the perdeuterated sn-1 chains of 18:0(d35)-22:6n3PC (●) and 18:0(d35)-22:5n6PC (○) plotted as a function of temperature. Experiments were conducted from low to high temperature. Both lipids have the same gel-fluid phase transition temperature of -2.5 °C.](image)

![Figure 4. The sn-1 chain order parameter profiles of 18:0(d35)-22:6n3PC (●) and 18:0(d35)-22:5n6PC (○) at 25 °C. The bottom part shows the difference in sn-1 order between both lipids. Stearic acid chain order parameters are lower in 18:0(d35)-22:6n3PC, in particular for chain segments that are located in the center of the bilayer.](image)
The NOESY spectrum of 18:0(d35)-22:6n3PC recorded at a mixing time of 300 ms. The intensity of cross-peaks varies significantly from resonance to resonance, indicating differences in the probability of contact between the corresponding protons as well as differences in motional correlation times.

Figure 5. 1H MAS NMR spectrum of 18:0(d35)-22:6n3PC in D2O (50 wt %) with signal assignments.

1H MAS NOESY Relaxation Rates. Excellent resolution of the 1H NMR resonances was achieved with both polyunsaturated lipids, particularly those resonances near the terminal methyl end. The line width at half-height varied from 25 Hz for the glycerol resonances to 3 Hz for the proton resonances arising from carbons C21 and C22 of the polyunsaturated DHA chain, allowing resolution of the J-coupling of 7 Hz. The 1H MAS NMR spectrum of 18:0(d35)-22:6n3PC is shown in Figure 5 along with the signal assignment. The intensity of NOESY cross-peaks (Figure 6) reaches a maximum at mixing times between 300 and 500 ms, decreasing at longer mixing times due to spin−lattice relaxation. Similar behavior has been observed for other lipids.23,57 Spin−lattice and cross-relaxation rates were calculated as described in Materials and Methods.

The spin−lattice relaxation rates of DHA and DPA agree within experimental error, with the exception of the terminal methyl group of the polyunsaturated chains where the DPA result is higher by a factor of 1.5. The cross-relaxation rates from the choline methyl resonance to all other resonances are reported in Figure 7. As expected from their average location along the bilayer normal, the rates of magnetization transfer to the headgroup region, the glycerol group, and to protons of upper chain segments are high, whereas cross-relaxation rates to lipid resonances from hydrocarbon chains at the center of the bilayer are more than 1 order of magnitude lower. Although the cross-relaxation rates between very distant groups, e.g., the choline resonances and the resonances at the methyl end of polyunsaturated hydrocarbon chains, are small, they are observed in our experiments. In this regard, polyunsaturated lipids are not unique.

In experiments on saturated lipids, we established earlier that such seemingly unusual transfers are the result of a low, but finite, probability of direct intermolecular contact between these, on average, distant protons rather than the result of spin-diffusion.23,57 The efficiency of spin diffusion along lipids in the fluid phase is very low because of rapid conformational transitions that average out the dipolar interactions between neighboring lipid segments. Although the polyunsaturated chains have fewer degrees of freedom, the energy barrier for rotation about the C−C bonds of the methylene groups between double bonds (less than 1 kcal mol−1) is much lower than the rotational barriers in saturated chains (more than 3 kcal mol−1).43 These low rotational barriers allow for rapid conformational transitions in polyunsaturated chains, producing a high degree of conformational disorder and allowing cross-relaxation between headgroup and chain resonances. Everts and Davis58 observed similar magnetization transfer between the methylene segments of DHA and choline using a 1H−13C cross-polarization experiment, but did not detect similar interactions between the choline group and the stearic acid chain. The NOESY experiments on 18:0−22:6n3PC with a protonated stearic acid chain (results not shown) detected both choline to DHA as well as choline to stearic acid magnetization transfer at rates that are identical within experimental error.

The differences between cross-relaxation rates of choline to DHA or DPA chain resonances are smaller than the experimental error of the measurements. These rates are a function of both membrane structure (proton−proton distances and orientations) and dynamics (the correlation time of the inter-nuclear vector). To ensure that the agreement between DHA and DPA results was not a fortuitous cancellation of these two effects, we calculated the correlation function for the proton−proton dipolar interaction, C(t), from the MD simulation.

Figure 8 shows the calculated correlation function of dipolar trajectories using methods we have described previously.42 Figure 8 shows the calculated correlation function of dipolar trajectories using methods we have described previously. 42

Table 1. 13C Spin–Lattice Relaxation Times, T_1, and the Cross-Polarization Time Constants, T_{CP}, of Carbons of DHA and DPA in 18:0(d$_{35}$)-22:6n3PC and 18:0(d$_{35}$)-22:5n6PC, Respectively, Recorded at a Resonance Frequency of 125.7 MHz and a Temperature of 30 ± 2 °C

<table>
<thead>
<tr>
<th>Chemical shift (ppm)</th>
<th>Chemical shift (ppm)</th>
<th>T_1 (13C) (s)</th>
<th>T_{CP} (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHA</td>
<td>DPA</td>
<td>Assignment</td>
<td>DHA</td>
</tr>
<tr>
<td>35.82</td>
<td>35.82</td>
<td>C2</td>
<td>0.34</td>
</tr>
<tr>
<td>24.48</td>
<td>24.50b</td>
<td>C3</td>
<td>0.36</td>
</tr>
<tr>
<td>130.63</td>
<td>130.65</td>
<td>C4</td>
<td>0.52</td>
</tr>
<tr>
<td>130.54</td>
<td>130.47</td>
<td>C5</td>
<td>0.53</td>
</tr>
<tr>
<td>130.30</td>
<td>130.38</td>
<td>C7</td>
<td>0.78</td>
</tr>
<tr>
<td>129.76</td>
<td>129.92</td>
<td>C8</td>
<td>0.83</td>
</tr>
<tr>
<td>129.90</td>
<td>129.77</td>
<td>C10,C11</td>
<td>1.10</td>
</tr>
<tr>
<td>130.10</td>
<td>130.12</td>
<td>C13</td>
<td>1.15</td>
</tr>
<tr>
<td>130.85</td>
<td>130.17</td>
<td>C14</td>
<td>1.43</td>
</tr>
<tr>
<td>130.17</td>
<td>129.55</td>
<td>C16</td>
<td>1.92</td>
</tr>
<tr>
<td>129.60</td>
<td>131.79</td>
<td>C17</td>
<td>1.98</td>
</tr>
<tr>
<td>128.89</td>
<td>31.35</td>
<td>C19</td>
<td>3.13</td>
</tr>
<tr>
<td>133.44</td>
<td>33.48</td>
<td>C20</td>
<td>3.40</td>
</tr>
<tr>
<td>22.42</td>
<td>24.50b</td>
<td>C21</td>
<td>3.85</td>
</tr>
<tr>
<td>15.99</td>
<td>15.85</td>
<td>C22</td>
<td>4.22</td>
</tr>
</tbody>
</table>

a measured at a spinning frequency of 5 kHz. b The C$_1$ and C$_{10}$ carbon signals are superimposed in the 13C spectrum of 18:0(d$_{35}$)-22:5n6PC; the time constant of magnetization transfer was determined from the rise of signal amplitudes at the commencement of the C–H contact.

of C$_4$ in 13C labeled DHA that was incorporated as free fatty acid at low concentration into a matrix of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine. This resonance was assigned with a 13C COSY experiment on the free fatty acid (results not shown). The assignment of DHA resonances for carbons C$_{20}$, C$_{19}$, and C$_{17}$ agrees with values that have been reported in the literature. 59 The resonances C$_{10}$ and C$_{11}$ in the center of the chain are superimposed. Signal assignments and spin–lattice relaxation times are reported in Table 1, and Figure 9, 11.

The relaxation times were observed to increase in a stepwise fashion from double bond to double bond toward the terminal methyl end (see Table 1, Figure 11). The spin–lattice relaxation rates, 1/T_1, depend on the spectral density function $J(\omega)$ according to

$$\frac{1}{nT_1} = \frac{1}{10} (\gamma C H T h \frac{1}{2\pi \tau_C^{CH}})^2 \times (J(\omega_C - \omega_H) + 3J(\omega_C + \omega_H) + 6J(\omega_C + \omega_H))$$

where n is the number of protons per carbon, γ_H, and γ_C's are the magnetogyric ratios for protons and carbons respectively, h is Planck's constant, and ω_C and ω_H are the resonance frequencies of carbons and protons, respectively. The connection between the correlation functions of chain motions, $C(t)$, and the experimentally measured spin–lattice relaxation rates is through the spectral density function (the Fourier transform of the correlation function)

$$J(\omega) = \int_0^\infty C(t)\cos(\omega t)dt$$

Considering a simple exponential decay of $C(t)$ we obtain the following dependence of spectral density on motional correlation time τ

The 13C spin−lattice relaxation rates, $1/T_1$, were also calculated from the simulation trajectory for both DHA and DPA containing lipids. The starting point for such a calculation is the second rank reorientational correlation function

$$C(t) = C(0)e^{-\beta t} = \frac{2C(0)t}{1 + \tau^2\omega^2}$$

where P_2 is the second-order Legendre polynomial and $\bar{\mu}(t)$ is the unit vector directed along the $C=H$ bond at time t. The brackets in eq 6 represent an averaging over all lipids and over all time intervals.

The simulations revealed a dramatic difference in chain dynamics between the saturated stearic acid and the polyunsaturated docosahexaenoic acid at carbon C12 (data not shown). The stearic acid correlation functions had a lower decay rate and reached a constant value different from zero at times longer than 5 ns. The correlation function of C12 of DHA decayed more rapidly, reaching zero within 2 ns. The faster decay for DHA is indicative of more rapid motions, whereas the decay to zero indicates a very low order parameter of the corresponding $C=H$ bond.

Furthermore, we observed a strong gradient of motional correlation times along the polyunsaturated chains. To describe the relaxation of the reorientational correlation functions, from which the T_1 were calculated, we fitted the data to a sum of 4 exponentials,

$$C(t) = \sum_i^n a_i e^{-\beta t}$$

Included in each panel is a plot of a simple exponential decay with a decay time, τ_{ave} (dashed line). A comparison of this curve with the actual correlation function data shows clearly the complex relaxation that is occurring on time scales from femtoseconds to multi-nanoseconds.

The values of $T_1^{13}C$ are about 1 order of magnitude lower than T_1 (see also Everts and Davis). The comparison of reorientational correlation functions of DHA and DPA reveals that for positions near the top of the chain, the decay is very similar, with relaxation times that become progressively shorter down the chain. The chain dynamics are distinctly different for DHA and DPA at the methyl end. Here the presence of an additional double bond imparts faster reorientational dynamics to the DHA segments, as seen in Figure 11. The difference in relaxation rates extends to the middle of the lipid chains. It can be understood in terms of the much higher isomerization rate observed for dihedral angles found between double bonds. As described by Feller, Gawrisch, and MacKerell, the rotational barrier for methylene segments separating double bonds is extremely low (<1 kcal/mol) leading to high rates of chain isomerization. The loss of a double bond in DPA eliminates two $C=H$ bonds with low barriers to rotation resulting in motional restrictions and longer correlation times at the terminal methyl end of DPA. Calculated and measured spin−lattice relaxation times are in good quantitative agreement, although there is a tendency for the differences between DHA and DPA near the terminal methyl to be
somewhat larger in the simulations. It could stem from weak contributions to relaxation other than dipolar interactions from directly bonded protons, and from absence of slower collective modes of motion in the simulations.

1H-13C Cross-Polarization. The rapid chain motions in the liquid crystalline state effectively suppress magnetization transfer between proton resonances by spin diffusion. Therefore, magnetization transfer from the protons to a particular carbon resonance at reasonably short contact times is dominated by a transfer from the directly bonded protons. This was confirmed in a 1H-13C cross-polarization experiment with selective presaturation of proton resonances conducted by Everts and Davis. The authors suggested measuring cross-polarization growth under spin-lock conditions, saturated lipids (Figure 12, Table 1). The rate of magnetization transfer, $1/T_{CH}$, is proportional to the bond order parameter S_{CH}. To report absolute values of order parameters for all resolved carbons, the values of $1/T_{CH}$ were calibrated separately to the measured 2H NMR order parameters of methyl groups, methylene groups, and olefin carbons.

For the calibration we used partially assigned 2H NMR order parameters from a previous experiment conducted on 18:0-22:6n3(d31)PC with a perdeuterated DHA chain. The T_{CH} values of methyl groups were related to the measured 2H NMR order parameter of the terminal methyl group of DHA ($S_{CD(1)} = 0.008$). The order parameters of methylene groups were related to the averaged order parameter ($S_{av} = 0.101$) of the two nonequivalent protons at C2 of DHA ($S_{CD(1)} = 0.115$; $S_{CD(2)} = 0.088$). Order parameters of double bonds were calculated assuming that the C4 of DHA has the highest order parameters of double bonds ($S_{CD} = 0.046$). The strength of quadrupolar interactions is higher than the strength of dipolar interactions by almost 1 order of magnitude. Therefore, the order parameters determined via the dipolar interactions are sensitive to somewhat slower collective motions in the lipid bilayer with correlation times from micro- to milliseconds. However, such motions reduce order parameters of all lipid segments by the same factor. Therefore, the calibration to the order parameters measured by 2H NMR corrects for such differences.

The experimentally assigned order parameter profiles of DHA and DPA in 18:0(d31)-22:6n3PC and 18:0(d31)-22:5n6PC, respectively, are presented in Figure 13. The redundancy in order parameters determined by $1/T_{CH}$ values and 2H NMR suggests that experimental errors of order parameters determined via T_{CH} measurements are of the order of 20%. This is reasonable, given the experimental error in T_{CH} and the approximations in the theory. Order parameters from 2H NMR measurements on deuterated DHA chains were reported earlier, however, they could not be experimentally assigned to specific carbon atoms. Additionally, the order parameter of the olefin carbon C4 ($S = 0.05$) is by a factor of 1.6 lower than the value reported by Huber et al. Although we are uncertain about the origin of

Figure 11. Measured (A) and calculated (B) spin lattice relaxation times, T_1. The relaxation times were multiplied by the number of directly bound protons per carbon to provide a better measure of chain dynamics. Note that relaxation times change by more than 1 order of magnitude from C2 to C22.

Figure 12. Intensity of the 1C resonance of olefin carbon C8 in the DHA chain of 18:0(d31)-22:6n3PC as a function of cross-polarization contact time. The initial rate of intensity increase is determined by the effective strength of dipolar interactions between protons and carbons expressed as cross-polarization time constant T_{CH}. Intensity decreases due to rotating frame spin–lattice relaxation of carbon and proton nuclei ($T_1(13)$ and $T_1(2H)$).

confirmed by a magic angle spinning 2H NMR experiment on 18:0-22:6n3PC. Order parameters were determined from measurements of T2H cross-polarization rates, calibrated to 2H NMR order parameters measured in 18:0-22:6n3(d30)PC with a perdeuterated DHA chain. The double bonds are highlighted with bars and labeled with numbers.

this difference, we feel that our value is more accurate since it was confirmed by both 2H and 13C NMR measurements. The order parameters of all DHA/DPA chain segments are significantly lower than the corresponding positions in the saturated sn-1 chains. The lower order in double bonds was expected because of the differences in bond geometry that points the C=H bonds of extended chains at an angle to the bilayer normal close to the magic angle. However, the very low order parameters of all methylene groups between the double bonds can result only from unrestricted chain motions. Remarkably, the methylene groups located between double bonds in DHA (C6, C9, C12, C15) have the same very low order parameter of S = 0.012. This was confirmed by a magic angle spinning 2H NMR experiment on a perdeuterated DHA chain with chemical shift resolution and scaled recoupling of the quadrupolar splitting.43 The order of the last methylene group between double bonds, C18, is very low (S = 0.004). Order parameters at C21 and C22 are also low but slightly higher than C16–C20.

As expected from the relaxation experiments the order parameters of chain segments near the terminal methyl group are particularly low, indicating increased motional amplitudes. The order parameters of chain segments C18–21 of DHA and DPA cannot be directly compared due to the lack of double bond number six in DPA. Nevertheless, there is a tendency for, on average, slightly higher order parameters in the olefin range of DPA (see Figure 13). A remarkable feature is that order parameters of carbons in double bonds 1–4 of both DHA and DPA show higher order at the first carbon in the bond relative to the second. The double bonds must be, on average, inclined with respect to the bilayer normal to result in nonequivalent order parameters. This repeating pattern points to structural preferences that are similar for both chains, despite the rapid conversion between conformers. The order parameters of polyunsaturated chains calculated from the simulations are in reasonable agreement with the measured values. Unfortunately, the length of the simulations is still not adequate to report order parameters with sufficiently small error bars that would permit a meaningful quantitative comparison with experimental results.

X-ray Results: The relative continuous Fourier transform calculated for the fully hydrated 18:0(d35)-22:6n3PC is shown in Figure 14. The bilayer structure is best determined from diffuse data such as shown in Figure 1, because the data have been corrected for fluctuation degradation, and also since they extend out to large q values. The form factors at lower D-spacings are added just to check the zeroes shown in Figure 9. Several features are important to note. The profiles are arbitrarily normalized to the same peak-to-trough extent. The most prominent feature in a comparison of the profiles is the broader and more shallow methyl trough of DOPC, DMPC, and DPPC calculated from diffuse data have not been published previously, but are similar to profiles created by Fourier reconstruction (DOPC, DMPC, and DPPC).

The profiles are arbitrarily normalized to the same peak-to-trough extent. The most prominent feature in a comparison of the profiles is the broader and more shallow methyl trough

1. These lower D-spacings are too far from full hydration to display diffuse data and so are not fluctuation corrected. As shown, they do not fit neatly onto the continuous transform and were not used for the fully hydrated structure determination. Electron density profiles calculated as described in Materials and Methods of 18:0(d35)-22:6n3PC, 18:0(d35)-22:5n6PC, and of other lipids for comparison are shown in Figure 15. Profiles

Figure 13. Order parameter profiles of DHA and DPA chains in 18:0(d35)-22:6n3PC (●) and 18:0(d35)-22:5n6 PC (○), respectively. Order parameters were determined from measurements of T2H cross-polarization rates, calibrated to 2H NMR order parameters measured in 18:0-22:6n3(d30)PC with a perdeuterated DHA chain. The double bonds are highlighted with bars and labeled with numbers.

Figure 14. Continuous Fourier transform of 18:0-22:6n3PC calculated as described in Materials and Methods using the D = 66.2 Å data.

Figure 15. Relative electron density profiles for fluid phase lipids at 24 °C (DOPC and DMPC at 30 °C, DPPC at 50 °C) were constructed from diffuse data such as shown in Figure 1. The DMPC gel phase profile at 10 °C (magenta) was obtained by fitting to a single Gaussian model (see Fig. 9 in ref 40).

region in the 18:0(d35)-22:6n3PC bilayer. By contrast, the profile for 18:0(d35)-22:5n6PC is quite similar to the electron density profiles of other lipids such as fluid phase DOPC62 and DMPC63 (see Figure 15). This difference between the two profiles of the DHA and DPA lipids extends out to 12 Å from the bilayer center. When we calculate the electron density of each chain minus the terminal methyl group by using a 0.8 ratio for the molecular volumes of CH=CH/CH$_2$=CH$_2$, we obtain the chain electron densities: DHA = 0.298 e/Å3, DPA = 0.296 e/Å3 and stearic acid = 0.284 e/Å3. The difference in the electron densities of the entire DHA and DPA chain is not significant, but both polyunsaturated chains have a significantly larger electron density than the stearic acid chain. This suggests that the lower electron density seen out to 12 Å from the center of the bilayer in 18:0(d35)-22:6n3PC could be due to an increased concentration of the stearic acid chain near the center of the bilayer. The other prominent feature in the profiles is the head-to-head spacing due primarily to the electron dense phosphate groups; this occurs at $D_{HH} = 37.9 ± 0.2$ Å. The head-to-head spacing is one measure of the bilayer thickness, but perhaps more useful is the value $2D_c$, the thickness of the hydrocarbon core, calculated as in Nagle and Tristram-Nagle, reference 36, $2D_c = 2V_c/A$. This number is $30.5 ± 0.2$ Å, in reasonable agreement with the value of 29.6 Å of Petrache et al.65 who used solid-state 2H NMR together with volume data. We also calculate a thickness parameter, D_K, defined in Nagle and Tristram-Nagle36,37 which is a more realistic measure of total bilayer thickness since it includes some headgroup water. The value of $D_K = 48.5 ± 0.2$ Å is the same for both lipids. The surface areas per molecule for 18:0(d35)-22:6n3PC and 18:0(d35)-22:5n6PC are 68.2 and 68.7 Å2, respectively, and are identical to within experimental error.

The membranes of both lipids had similar values of the bending modulus $k_e = 1.1−1.2 × 10^{-12}$ ergs, slightly higher than 0.8 $× 10^{-12}$ ergs obtained for DOPC,62 indicating slightly more rigid bilayers presumably due to the contribution from the saturated chain.66 The increase in the number of double bonds from five (DPA) to six (DHA) did not alter bilayer elasticity, but may have caused the decrease in the compression modulus B (see Table 2) in 18:0(d35)-22:6n3PC. The value of B reflects the strength of elastic interactions between the bilayers, i.e., the hydration force and the van der Waals interactions.67 As shown in Table 2, the repeat spacing of bilayers, D, was 1 Å larger for 18:0(d35)-22:6n3PC compared to 18:0(d35)-22:5n6PC, first measured in the oriented samples, and then confirmed using unoriented, fully hydrated capillary samples. Since the bilayer thickness is the same, this indicates slightly larger water spacing between bilayers of 18:0(d35)-22:6n3PC, equivalent to a larger number of water molecules/lipid, n_w (see Table 2). We presume that this difference is related to differences in the densities of polyunsaturated chain segments at the lipid-water interface that are discussed below.

The remarkable difference between the polyunsaturated lipids in the trough region of electron density profiles can be interpreted by comparison with results from molecular simulations. In Figure 16A the distribution of water, phosphate groups, and stearic acid

Figure 16. Volume fraction distribution functions in 18:0–22:6n3PC and 18:0–22:5n6PC. (A) The fraction of system volume occupied by water, choline/phosphate/carbonyl groups, and hydrocarbon chains is shown for both lipids (solid—18:0-22:6n3PC, dashed—18:0-22:5n6PC), showing only negligible differences in the overall bilayer structure, (B) The differences between DHA- and DPA-lipids are visible in the fraction of system volume occupied by the sn1 and sn2 fatty acid chains (solid line—stearic acid in 18:0-22:6n3PC, ○—stearic acid in 18:0-22:5n6PC, dashed line—DHA, ○—DPA).

Table 2. X-ray Results

<table>
<thead>
<tr>
<th>Lipid</th>
<th>D-spacing ± 0.2 Å</th>
<th>D_{HH} ± 0.1 Å</th>
<th>V_c ± 0.1 Å</th>
<th>A ± 0.4 Å</th>
<th>μ ± 0.5 Å</th>
<th>$2D_c$ ± 0.1 Å</th>
<th>D_K ± 0.1 Å</th>
<th>$k_e \pm 0.2$ (10$^{-12}$ergs/cm2)</th>
<th>$B \pm 0.2$ (10$^{-12}$ergs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:0-22:6n3PC</td>
<td>66.2 ± 0.16</td>
<td>37.9 ± 0.15</td>
<td>1359</td>
<td>68.2 ± 0.2</td>
<td>30</td>
<td>305</td>
<td>48.5 ± 0.2</td>
<td>1.2 (10$^{-12}$ergs/cm2)</td>
<td>1.3 (10$^{-12}$ergs)</td>
</tr>
<tr>
<td>18:0-22:5n6PC</td>
<td>65.2 ± 0.19</td>
<td>37.9 ± 0.15</td>
<td>1366</td>
<td>68.7 ± 0.19</td>
<td>29.1</td>
<td>305</td>
<td>48.5 ± 0.2</td>
<td>1.1 (10$^{-12}$ergs/cm2)</td>
<td>2.5 (10$^{-12}$ergs)</td>
</tr>
</tbody>
</table>

References:

This difference, in combination with differences of electron densities between saturated and polyunsaturated chains, and a slightly broader distribution of terminal methyl groups in DHA (data not shown) are responsible for the wider trough in the electron density profile of 18:0(d35)-22:6n3PC bilayers.

Discussion

The first reports concerning DHA to DPA replacement under conditions of \(\omega-3\) fatty acid starvation were published more than three decades ago.\(^{68}\) The possibility that changes in membrane properties are responsible for the adverse effects on cell function of this replacement was discussed. Results obtained on less unsaturated membranes, however, suggested that changes in membrane properties caused by the deletion of a single double bond would vanish in highly unsaturated chains. This was frequently cited as evidence that the membrane hypothesis was unlikely to explain the biological effects of \(\omega-3\) fatty acid starvation. A definitive study was, until recently, not possible due to the lack of sufficient quantities of purified DPA and because of insufficient resolution in the necessary experimental methods.

Advances in the production of bulk quantities of polyunsaturated fatty acids using algal cultures enabled us to prepare large quantities of DPA with a purity of 98\%. Mixed-chain phospholipids with a low level of migration of acyl chains between position sn-1 and sn-2 at the glycerol were subsequently synthesized by Avanti Polar Lipids. Additionally, sample preparation procedures and experimental protocols were developed to monitor and prevent lipid oxidation. With magic angle spinning NMR we resolved a sufficient number of carbon resonances of each polyunsaturated chain to enable a detailed comparison of assigned order parameters and relaxation times. The NOESY proton NMR experiments provided a quantitative measure of conformational disorder and motions of lipids in the bilayers.\(^{23,42,57,69}\) The diffraction experiments took advantage of recently developed approaches to data analysis in combination with the high intensity of X-rays from a synchrotron beam.\(^{29}\) Finally, interpretation of differences in lipid packing and dynamics was aided by recent advances in molecular simulations that provided sufficiently accurate and long simulations to calculate correlation functions of dipolar interactions between protons and carbons (to find spin–lattice relaxation times of carbons), and between the protons of lipids (to calculate cross-relaxation rates).\(^{31–43}\)

Despite the seemingly insignificant difference in chemical structure between the lipids, we observed surprisingly large changes in chain order parameters, spin–lattice relaxation times, effective rates of magnetization transfer from protons to carbons, and, electron density profiles near the center of the bilayer. These differences are not reflected in several parameters traditionally used to compare bilayers: the main phase transition temperature of both lipids is identical within a fraction of a degree centigrade, and overall bilayer geometry, expressed as bilayer thickness and area per molecule, is identical within the margins of experimental error. The outcome of these experiments and simulations points out a difference in the packing of lipid hydrocarbon chains that is represented qualitatively in Figure 17. For 18:0(d35)-22:6n3PC the polyunsaturated DHA chain has higher density near the lipid water interface than the saturated stearic acid chain.

Figure 17. Schematic presentation of the density differences between stearic acid (SA) and the polyunsaturated DHA and DPA chains over the hydrophobic thickness of a monolayer. The volume density of polyunsaturated chains is higher at the lipid water interface, while density of the saturated chain is higher in the bilayer center. The loss of a single double bond from DHA to DPA tends to equalize the differences in chain distributions.

Conversely, in the bilayer center the density of saturated chain segments is higher than the density of DHA. With the loss of a single double bond at the methyl terminal end of the polyunsaturated chain (DHA to DPA replacement) a significant redistribution of chain density takes place. The densities of saturated and polyunsaturated chains at the interface and the bilayer center tend to equalize, whereas the average area per molecule and the hydrophobic thickness of the bilayer are maintained. This model is in agreement with experimental observations. In particular, it predicts differences in the sn-1 chain order profiles with lower order in 18:0(d35)-22:6n3PC for carbons C\(_{10–12}\) compared to 18:0(d35)-22:5n6PC because the stearic acid chain occupies a larger lateral area in the center of the bilayer. However, slightly lower order was also observed for carbons in the region of the order parameter plateau (C\(_{14–16}\)) indicating that an increase in area per molecule is not the only reason for changes in sn-1 chain order. The order parameters of the DPA chain compared to DHA are slightly different, in particular for segments near the terminal methyl group, because this chain is on average somewhat more extended than DHA. The difference between electron density profiles is plausible as well: polyunsaturated chains have higher electron density per unit of volume than saturated chains. The relative increase of saturated chain density in the center of 18:0(d35)-22:6n3PC bilayers is thus at least partly responsible for the wider trough region.

What could be the reasons for the redistribution of chain densities? The double bonds in polyunsaturated fatty acids are more polarizable than the saturated segments, enabling weak polar interactions between electrical dipoles at the lipid-water interface with polyunsaturated hydrocarbon chains. This difference may be responsible for the higher density of polyunsaturated chains at the lipid water interface compared to saturated and monounsaturated chains. The loss of a double bond near the methyl end of DPA generates a continuous region of five carbons with the interaction properties of a saturated chain. This region is likely to have lower free energy in the bilayer center, exerting a gentle force that stretches the DPA chain. Differences in the distribution of internal degrees of freedom...
between the polyunsaturated chains, in combination with intermolecular chain-chain interactions, may contribute to the differences in chain distribution as well.

Steric interactions between chains impose an alignment that is reflected in the order parameter profile and in the gradient of correlation times of chain motion. The magnitude of these repulsive steric interactions is a delicate function of the distribution of degrees of freedom over the length of the chain. The differences in the quality and distribution of motional degrees of freedom are well reflected by the spin–lattice relaxation measurements in the center of the bilayer. Both polyunsaturated chains move with larger amplitudes and shorter correlation times than their saturated counterparts, with the DHA chains moving more rapidly than the DPA chains. It is conceivable that the less flexible tail section of DPA favors more correlated motions and spin correlation times than their saturated counterparts, with the DHA chains.

The redistribution of polyunsaturated chain density in going from 18:0(d_{33})-22:6n3PC to 18:0(d_{33})-22:5n6PC is likely to be reflected in the lateral pressure density profiles of their bilayers. Lipid lateral area per molecule is a delicate balance of attractive and repulsive forces. Compression results from the hydrophobic effect at the lipid-water interface and attractive van der Waals forces between lipids. Expansion arises from the repulsive steric interactions between the fluid lipid segments. Although attractive and repulsive forces cancel over the thickness of a lipid monolayer, the point of action of these forces is not identical, resulting in a moment of force. If sufficiently large, these forces lead to the bending of monolayers. The X-ray diffraction experiments reveal that the elastic bending modulus of membranes with DHA and DPA chains is identical. Therefore, any possible differences in curvature stress must result from differences in the spontaneous radius of monolayer curvature. Experiments are underway to measure this value. Calculations have indicated that membrane curvature stress can significantly influence the structural equilibrium between conformers of integral membrane proteins with different molecular shape.70–72

The relationship between membrane curvature and the free energy of protein conformers was explored experimentally for the equilibrium between M1 and M2 states of bovine rhodopsin.73

Because of the significant redistribution of chain densities and its likely effect on the lateral pressure profile, we speculate that the replacement of DHA by DPA has impact on activation of G-protein coupled membrane receptors via curvature stress.

Conformation and Dynamics of Polyunsaturated Chains.

The models of polyunsaturated hydrocarbon chains in bilayers have undergone a remarkable transition over the past two decades. Early attempts to find energy minimized structures of polyunsaturated lipids74–76 inadvertently contributed to the perception that polyunsaturated chains in membranes are rigid and bulky. The lower order parameters/faster dynamics of unsaturated chains and of labels in polyunsaturated lipid matrixes were thought to be related to packing perturbations from the introduction of bulky polyunsaturated chains. However, our more recent experiments and simulations,43,45,55,77–81 as well as those from other laboratories (see e.g., refs 58,61,65,82–84), allow us to conclude that polyunsaturated chains surpass their saturated monounsaturated counterparts in conformational freedom and in the rate of structural transitions, particularly for the segments near the terminal methyl group. The amplitudes and correlation times of motions of polyunsaturated chains are close to those in neat liquids. This exceptional flexibility is related to the electronic structure of polyunsaturated chains. Although these chains have fewer degrees of freedom, their flexibility is greatly promoted by lower potential energy barriers for rotation about C–C single bonds.43 Low concentrations of polyunsaturated lipids, in the range from 1 to 10 mol %, are found in the majority of lipid matrixes of mammals. Although the changes in global membrane properties are less pronounced at low concentrations, these lipids may nevertheless influence the function of integral proteins. It is conceivable that the ease at which the polyunsaturated chains change their conformations allows these chains to adapt to the rugged surface of transmembrane helix bundles. Additionally, the polarity of the double bonds may enable them to engage in polar interactions with the electrical dipoles in transmembrane helices. Thus the DHA chains seem ideally suited to “solvate” integral membrane proteins, in particular those that undergo rapid structural transitions. The differences in conformational freedom and dynamics between DHA and DPA would likely have an impact on protein function and thus explain the adverse effects observed upon fatty acid replacement.

Acknowledgment. The purification of DPA by preparative HPLC was conducted by Joby Mathews. Dr. Laura L. Holte conducted the 13C–13C COSY experiment on a sample of 13C-labeled DHA that was kindly provided by Martek Biosciences. The authors thank Dr. John F. Nagle and Yufeng Liu for assistance in obtaining the X-ray data, and Yufeng Liu for providing the diffuse scattering analysis program. S. E. F. thanks the National Science Foundation for support through award MCB-009150 S.T.-N. thanks the NIH for support through Grant No. GM44976 and for use of the CHESS synchrotron through NSF Grant No. DMR-9311772.

Supporting Information Available: 31P NMR spectra of 18:0(d_{33})-22:6n3PC and 18:0(d_{33})-22:5n6PC; 1H- and 13C MAS NMR spectra of 18:0(d_{33})-22:5n6PC; 1H chemical shift assignments and spin–lattice relaxation times of 18:0-22:6n3PC, 18:0-22:5n6PC, and 18:0(d_{33})-22:5n6PC; intensities of diagonal- and cross-peaks of 18:0(d_{33})-22:5n6PC as a function of mixing time; NOESY cross-relaxation rate matrices of 18:0(d_{33})-22:5n6PC and 18:0(d_{33})-22:6n3PC. This material is available free of charge via the Internet at http://pubs.acs.org.

J.A.029029O